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Abstract—A hierarchical distributed energy management for
multiple photovoltaic (PV) based electric vehicle (EV) charging
stations (PV-CSs) is proposed and analyzed in this paper. In the
station level, PV-CSs are modelled as independent players with
objectives to stabilize their average available capacity (AAC) of
the storage battery tank. Meanwhile, in EV level, EV owners are
modeled as players with objectives to maximize their charging
power. Then a two level power distribution game is utilized
to model the power distribution problem in both station and
EV level. Through utilizing a consensus network based learning
algorithm, a cooperative and a generalized Stackelberg equilib-
rium are achieved in station and EV level through a distributed
fashion. One case studies, i.e., two station case, is implemented
in simulation to verify the performance and effectiveness of the
proposed strategy. The simulation results show that the proposed
energy management has an excellent performance in both cases
and comparing against stations without management.

Index Terms—Distributed energy management, Game theory,
multiple PV-based charging station, consensus network.

I. INTRODUCTION

Thanks to the requirements of world energy demand, global
CO2 emissions, as well as increasing renewable energy ca-
pacity, electric vehicles (EVs) are considered as a promising
solution to handle all these challenges. However, due to the
limited capacity of the EV storage battery tanks, EV owners
still suffer from the short EV driving range and EV charging
concerns. Thus integration of renewable energy generation
to EV charging stations is a strict forward solution. Among
renewable energy generation units, photovoltaic (PV) panel
array is commonly utilized because they can be easily im-
plemented on the roof of the charging stations. Based on
these concerns, PV-based electric vehicle charging stations
(PV-CSs) are promising solutions toward both EV charging
and renewable energy implementation. In addition to single
PV-CS, multiple PV-CSs application is more challenging in
both modeling and energy management aspects and thus is
considered as target application in this paper.

The energy management problem inside a PV-based charg-
ing station is still a challenging work due to uncertainties in
generation of PV, characteristics of EVs, as well as arriving
time of EVs. A rule-based decision making strategy imple-
mented in a PV-based battery switch station is introduced
in [1]. The objective is to provide the battery swapping

service available all the time. A pre-defined heuristic rule-
based strategy is proposed to improve the self-consumption of
PV energy and reduce the impact on the grid [2]. Moreover, an
online-learning algorithm based control is applied to maximize
the self-consumption of PV system and decide the power
supplied from the power grid through scheduling strategy [3].
A decentralized energy management system is developed for
regulating the energy flow among the photovoltaic system,
the battery and the grid [4]. Their objectives is to achieve
the efficient charging of electric vehicles (EVs). However,
the charging power of EVs can not be determined by EV
owners. A game theory based distributed control is applied
in a PV-based charging station which can only be utilized in
island system [5]. More importantly, the above literatures only
discussed the energy management inside one PV-CS while the
interactions among multiple PV-CSs, i.e., a microgrid network,
were not taken into consideration. Instead of purchasing high-
price energy from the utility company, PV-CSs may coop-
erate with each other to overcome the energy requirement
as well as fully utilizing the renewable energy. To the best
knowledge of the authors, there is no discussion about the
energy management of multiple PV-CSs. However, the energy
management problem for multiple microgrid has been widely
studied. From economic point of view, energy trading among
multiple microgrid is also widely discussed. [6] discusses
a multiagent-based hierarchical energy management strategy
in order to minimize the economic cost among a multiple
microgrid. A multistep hierarchical optimization algorithm
is implemented based on a multiagent system. [7] intends
to determine the energy trading among multiple microgrid
through a distributed convex optimization framework. Besides
of cooperative control, deterministic and stochastic games are
applied to determine the a coordinated energy management
of multiple microgrids [8]. Instead of centralized energy
managements, decentralized energy management strategy in
both grid-connected and islanded modes is discussed and
analysed [9]. However, due to the unique characteristics of
the multiple PV-CSs, the above studies have not taken the
physical characteristics of the energy devices as well as the
preferences of the EV owners into consideration.

Considering both the physical characteristics and prefer-
ences of the PV-CSs and EV owners, this paper intends to

978-1-5090-6684-1/18/$31.00 ©2018 IEEE 1603



solve the energy management problem among multiple PV-
CSs and EVs through a hierarchical distributed energy man-
agement strategy. The objective of the proposed hierarchical
distributed energy management strategy aims to achieve the
following requirements, first, the PV-CS network should be
fully supported by renewable energy sources, i.e., PVs; the
entire energy management strategy should be flexible and
reconfigable, i.e., robust against uncertainties in the environ-
ment; the privacy of the EV should be fully protected, i.e., no
local information would be utilized to determine the charging
power distribution. Game theory, a famous mathematical tool
to dual with selfish players and coalitions, is utilized to
model the power distribution problem for multiple stations.
The energy management problem is decoupled into two level,
i.e., station and EV level. In the station level, a cooperative
game is utilized to determine the energy flow between neigh-
bour PV-CSs according to their average available capacity
(AAC). Note that AAC is a improved criteria comparing to
SOC discussed in [10]. In the EV level, a generalized non-
cooperative stackelberg game is utilized to solve the charging
power distribution problem among EVs according to their
status. In the simulation, a two station case is discussed and
analyzed in detail.

II. SYSTEM CONFIGURATION AND MODELING

A. System Overview

Fig. 1. The system configuration overview.

The overall system configuration of a multiple PV-CS
system is shown in Fig. 1. This example system is consist-
ed of a set of PV-CSs denoted by S = {S1,S2, ...,Sn},
storage batteries denoted by B = {B1,B2, ...,Bn}, PVs
denoted by PV = {PV1,PV2, ...,PVn}, loads denoted
by L = {L1,L2, ...,Ln}, and EVs denoted by EV =
{EV1,1,EV1,2...EV1,m, ...,EVn,m} (Note that the n is the
station number while m is the EV number). The distribution
system means the rest of the multiple PV-CSs. Notice that
the m can be different for PV-CSs with different scale. pi,j
denotes the virtual power flow between Si and Sj , i.e., the real
power flow would directly comes from the power grid while
virtual power flow would help the PV-CSs to determine the
real power exchange to the power grid. Thus, in this paper, the
virtual power transmitting lines are modeled exactly the same
as the communication lines. Note that only the active power
is discussed here while the reactive power is out of discussion
in this paper.

B. Distributed Network Model

As shown in Fig. 1, the station level cyber layer of a
multiple PV-CS system is represented through multiple PV-
CS networks. PV-CSs here can generate a virtual power flow
through virtual transmission line between each other (e.g.,
black solid lines here means virtual transmission lines.). Due to
the purposes of simplicity, the energy loss on the transmission
lines are modelled as constant efficiency, ηi,j . Note that since
one of the objective of this energy management requires
that the PV-CS network should be fully supported by PV
generators, the virtual power flow would help the PV-CSs to
determine the power to the grid in a distributed fashion.

The power network here can be modeled through a connect-
ed graph. In order to implement the proposed game theory
based energy management, the connectivity of the graph
should be guaranteed. Thus, the power network is assumed
to be a simple circle here. Inside a single PV-CS, similar to
the station level, the cyber layer is also treated as a connected
circle in this paper.

C. Single PV-CS System Overview

Fig. 2. The physical model of the one single PV-CS.

As shown in Fig. 2, a single DC bus topology is utilized for
physical layer inside one PV-CS. The PV array, the storage bat-
tery tank, the load, the grid connect system, as well as the EV
charging poles are connected to the DC bus through different
kinds of converters, i.e., DC/DC converters and bidirectional
inverters. Notice that, all these energy devices together with
the converters can work in three mode, i.e., voltage control
mode, current control mode, and standby mode. In order to
maintain a stable DC bus voltage, the converter together with
the storage battery tank is designed to work in a voltage
control mode while other converters are working in current
control mode. Notice that when the state of charge (SOC) of
the storage battery tank is lower than the limitation, the grid
connect system will work in voltage control mode instead of
the storage battery tank.

On the other hand, the cyber layer of the proposed multiple
PV-CS system can be modelled as a connected graph G =
(N, ε), where each node, i ∈ N , represents a station and each
link (i, j) ∈ ε) (virtual transmission line) represents a branch.
The pi,j equal to −pj,i while the stations without any virtual
transmission lines between them will have pi,j = 0. And thus
for each PV-CS, the real power exchange to the power grid
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can be represented as pgrid,i. The matrix of pgrid,i can be
represented as follows,

pgrid =


0 p1,2 p1,3 · · · p1,n

p2,1 0 p2,3 · · · p2,n
...

...
...

. . .
...

pn,1 pn,2 · · · pn,n−1 0

·


1
1
...
1

 . (1)

Notice that the pgrid,i will be controlled through the bidi-
rectional inverter. The cyber layer inside a station applies a
fixed topology. The storage battery tank, the PV panels, station
loads as well as all the EVs communicate through the same
transmission lines as physical layer. Note that the connectivity
of the cyber system have influence on the converging speed
of the proposed energy management strategy. And thus the
connectivity of the cyber layer should be guaranteed.

1) EV Model: The first order EV battery equivalent circuit
model is utilized to represent the physical model of the
EV [11], [12]. The relationship between the charging power
and the state of charge (SOC) of the EV can be written
as SOCEV,i,j . The updating matrix of SOCEV,i,j(t) can be
represented as follows,

SOCEV,i,j(t) = SOCEV,i,j(t− 1) +△t · pEV,i,j

CEV,i,j
. (2)

where CEV,i,j is the capacity of the jth EV storage battery
tank in the ith PV-CS; pEV,i,j is the charging power for the
jth EV in the ith PV-CS. Note that in the following paper,
all parameters inside of the ith PV-CS and jth EV would be
represented in ith PV-CS first and followed by jth EV number

Besides physical models, the EV preference model in this
paper represents the satisfaction level of the EV owners. The
basic idea is that the higher the charging power the higher the
satisfaction level it will be. More importantly, a logarithmic
function is utilized to represent the satisfaction level of the
EV owner. This is because that logarithmic functions are
commonly used to represent the user satisfaction level, uEV,i,j .
The matrix of uEV,i,j can be represented as follows,

uEV,i,j =
pEV,i,j,max

SOCEV,i,j
ln(pEV,i,j + 1) (3)

n∑
i=1

pEV,i,j,min ≤
n∑

i=1

pEV,i,j ≤ ptotal,i. (4)

where PEV,i,j,max and pEV,i,j,min are the maximum and
minimum charging power for a single EV; ptotal,i represents
the total power available to all EVs in ith PV-CS. Notice that
the EV owners are treated as risk-averse and thus logarithmic
functions are well matching their preferences.

Since for each incoming EV, the initial SOC, capacity of
the battery tank, and the incoming time is unknown, these
parameters are designed as uncertainties in this paper. The
initial SOC and capacity of the battery tank follows Normal
distribution while the incoming time follows the Poisson
distribution.

2) Storage Battery Tank Model: Again, the same equivalent
circuit model is utilized to be the physical model of the
storage battery tank. More importantly, the AAC of the storage
battery tank model here represents the satisfaction level of the
charging station administrator. Providing charging services to
EVs is the responsibility for the charging station administrator.
Thus, the average remaining capacity of the storage battery
tank is the key parameter of the station. Again, a logarithmic
function is utilized to represent the satisfaction level of the
charging station administrator toward the AAC as follows,

AACs,i =
SOCs,iCs,i

ns,i
(5)

us,i = ln[e− (e− 1)
ptotal,i
Pmax,i

], (6)

where Pmax,i is the upper boundary for the ptotal,i. Notice
that in order to increase the AAC of the station, it means to
maximize the charging power to the storage battery tank. On
the other hand, with a higher AAC of the storage battery tank,
it should provide better services to EV owners which means
higher charging power. And thus, the charging service quality
is related to the AAC of the storage battery tank.

3) Photovoltaic Panel Array Model: The physical model of
the PV panel array is consisted of radiation, temperature map
as well as equivalent circuit model. The one diode equivalent
circuit model is utilized because of its simplified topology and
middle level accuracy. For different PV-CSs, they will use
either winter and summer profiles alternatively to represent
the radiation uncertainty. The PV array model here basically
follows the MPPT control as well as the on-off control. For
most of the scenarios, PV array is working under MPPT
control while if the storage battery is fully charged, PV panel
will work in standby mode, i.e., to control the DC bus voltage.

4) Sizing Problem: The sizing problem here discusses the
trade-offs among storage battery tank, PV, and number of EVs.
The station load model here basically follows a predefined
commercial power consumption profiles considering the open
and close time of the station. Based on load information as
well as average incoming EVs for one single day is nearly 110,
in order to work in island mode, the total energy generated
from the PV panel array should be larger than the load
requirement. In this regard, considering the worst case, the
size of the storage battery should be the integration of the PV
power profile. As shown in Table I, the standard characteristics
of one single PV-CS is listed. Note that in the two PV-CS and
five PV-CS case studies, the specification of one single PV-
CS is exactly the same but the PV power profile would be
different according to the design of these case studies.

III. HIERARCHICALLY DISTRIBUTED ENERGY
MANAGEMENT

A. Cooperative Game in Station Level

As mentioned in previous sections, one of the objective of
this energy management is that there should be no energy
exchange from the electric grid, i.e., only power source should
be PVs. Thus the multiple PV-CS system can be treated as
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TABLE I
SPECIFICATION OF ONE SINGLE PV-CS

Parameters Value
Rated power of PV Cells 1200 kW
Rated capacity of an EV battery 64 kWh
Number of charging poles 20
Number of average incoming EV 110
Rated capacity of the grid-connecting system 1 MW
Capacity of the storage battery 3000 kWh

a large scaled island system. Therefore, stations should help
each other to provide energy from higher one to lower one.
As shown in Fig. 3, in station level, the PV-CS can be treated
as an energy system with storage, generation, and load units.
Thus, the power designed power exchange principle is similar
to the active balancing circuit in a battery management system,
i.e., the station with higher average remaining energy should
provide energy flow to the entire PV-CS network while the
lower one should absorb energy from the PV-CS network.

Fig. 3. The cooperative game in station level.

Thus the cooperative game in station level is designed
as, Gs = [S,pEV,us], where the players are PV-CSs, si,
the strategy sets are virtual power exchange, i.e., pi,j , and
the utility functions are us,i. The learning algorithm here is
designed based on consensus network through which each
station can share their AAC to its neighbours. The AAC here
is designed to qualify the charging availability for a PV-CS.
Through comparing the AAC, the virtual power exchange can
be determined at each control instant through a try and error
based rule, i.e., (7). Through applying this learning algorithm,
the AAC will converge to be the same, i.e., a cooperative
equilibrium, which is verified in the simulation results. Notice
that the control interval is designed to be fifteen minutes which
can be a user defined one.

pi,j = Pmax,i,j
AACs,i −AACs,j

max(AACs,i, AACs,j)
(7)

where pi,j is the power sent from station i to station j, Ci

is the capacity of the storage battery, ni is the number of the
charging poles, Pmax,i,j is the power limitation for the virtual
transmission lines. Notice that the idea behind this formulator
is a feedback technology. According to the difference between
the average remaining capacity in Si and Sj , the charging
power is proportional to this difference.

B. Generalized Stackelberg Game in EV Level
Since the station level power exchange has been determined

through the cooperative game, the EV charging power distri-
bution can be reached through a generalized stackelberg game.
In this game, the PV-CS and EV owners can be treated as a
leader and followers respectively [13]. At each control instant,
a rule based strategy is utilized to determine the total available
power to the EVs inside ith PV-CS, i.e., ptotal,i and then a
consensus network based non-cooperative game is utilized to
determine the power distribution among EVs. Notice that the
ptotal,i is virtually designed common constraint for all EVs in
a single station.

For the leader, the AAC of the storage battery tank is utilized
to determine the ptotal,i. Since the objective of the charging
station is to maintain the AAC level of the storage battery, the
ptotal,i should be tuned accordingly. Again, a feedback rule
based strategy is applied as follows,

ptotal,i = pmin,s,i(1 +
AACs,i

AACmax,s,i
), (8)

where AACmax,i is the maximum remaining energy of the
storage battery. The upper and lower bound of ptotal,i are
pmin,s,i = 0.5Cmax,iVbus,ini and pmax,s,i = Cmax,iVbus,ini,
respectively.

Given the ptotal,i, the EVs can determine their charging
power in a distributed fashion. Since the charging station and
EVs are treated as selfish agents here, the charging station
tries to maintain the AAC of the storage battery, while the
EVs intend to be charged at a higher power level. Thus
the energy management problem can be treated as a non-
cooperative stackelberg game. Given the objective function
discussed in previous section, each EV needs to determine
their charging power to optimize this objection function.
The solution provided here is based on Karush-Kuhn-Tucker
(KKT) conditions of optimality. For each EV, its objective
function can be written as Lagrangian Li,j ,

Li,j(pEV,i,j , λi,j) = uEV,i,j + λi,jG(pEV,i,j), (9)

G(pEV,i,j) =
n∑

i=1

pEV,i,j − ptotal,i. (10)

λi,j is the Lagrange multiplier.
Since (9) is concave, the KKT conditions are the necessary

and sufficient conditions for the existence the GNE. The KKT
conditions of the ith follower’s optimization problem are

∂Li,j

∂pEV,i,j
= − ai,j

pEV,i,j + 1
+ λi,j = 0, (11)

G(pEV,i,j) ≤ 0, (12)

and it is known that the KKT conditions are satisfied with [14],
[15]

λ1,j := λ2,j := ... := λn,j := λ. (13)

Notice that if (13) holds, the GNE is the most socially stable
one. When λj = 0, i.e., ptotal,i >

∑n
i=1 pEV,i,j , it is

straightforward that

pEV,i,j = PEV,i,j,max for λj = 0. (14)
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Otherwise, combining (11) and (13) gives the solution for
non-zero λ, i.e., a balanced decision on competing the total
available power ptotal,i among the followers,

pEV,i,j =
ai,j(ptotal,i + 1)−

∑n
j=1 ai,j∑n

j=1 ai,j
for λj ̸= 0. (15)

ai,j =
PEV,i,j,max

SOCEV,i,j
(16)

C. Consensus Networks Based Learning Algorithm

Based on the previous discussion, in station level each PV-
CS need to determine their power exchange to the neighbour
stations. Meanwhile, in EV level, each EV only need λi,j

to determine their charging power, as shown in (11). If a
centralized strategy is applied here, pgrid,i and λi,j can be
determined through a central controller. While the question
here is how to determine the pgrid,i and λi,js in a distributed
fashion. The solution provided here is applying consensus
network technology. In station level, pgrid,i will be determined
through a cooperative rule based strategy. In EV level, since
the required global information to assign the local optimal
solution would be λi. λi would be introduced as consensus
variable for the ith EV to access the global information
using a local sharing of information with neighbours based
on consensus algorithms. Due to the common constraint (4),
another consensus variable, i.e., δp, is utilized to guarantee
that each player will follow it. Notice that, due to the leader-
follower relationship, the pEV,i,js are available to the PV-CS.
The overall flow chart of the proposed consensus algorithm is
shown in Algorithm 1.

Algorithm 1 Consensus Network Based Learning Algorithm
Station Level

For each PV-CS
pi,j(k + 1) = Pmax,i,j

AACs,i−AACs,j

max(AACs,i,AACs,j)
EV Level

1.Initialization
λi,j(0) =

ai,j

PEV,i,j,max+1

δp =
∑

pEV,i,j − ptotal,i
2.Consensus phase

while variation of λi,j(k) > 0.001
λi,j(k+1) = λi,j(k)+

∑n
j=1 wi,j(λi,j(k)−λi,j(k))+

ηδp
pEV,i,j =

ai,j

λi,j(k+1) − 1

δp =
∑n

j=1 pEV,i,j − ptotal,i
end while

3.Check phase
if |δp| < ε then

Terminate, k++
else

Continue
end if

4.Go back to step 2

In station level, the station administrator could update the
pgrid,i through (7). In EV level, the first step is initialization

where λi,js are determined as,

λi,j =
ai,j

PEV,i,j,max + 1
. (17)

The second step is the consensus phase. In this phase, the
PV-CS and each EV updates δp and λi following the rule,

δp =
∑

pEV,i,j − ptotal,i, (18)

λi(k + 1) = λi(k) +
n∑

j=1

wi,j(λj(k)− λi(k)) + ηδp, (19)

where wi,js are connectivity strengths. The wi,js are always
chosen within [0, 1/ni] in order to make sure that the consen-
sus values converge to the average of the initial values of all
the node. (Note that the nodes should form a connected group,
i.e., there is a bidirectional path between any two nodes.) η is
the step size for the δp. In the next step, the virtual vehicle
will tune its λi(k+1) according to the difference between the∑n

j=1 pEV,i,j and ptotal,i. Then it goes back to step two until
the difference between the

∑n
j=1 pEV,i,j and ptotal,i is small

enough (λij(k+1) for the virtual vehicle will stop changing.).
After the λi,j(k + 1)s converges, each EV will update their
charging power according to the λi,j(k+1) and their charging
power boundaries,

pEV,i,j(k + 1) =
ai,j

λi,j(k + 1)
− 1, (20)

PEV,i,j,min ≤ pEV,i,j(k + 1) ≤ PEV,i,j,max. (21)

Note that KKT multipliers for these box constrains are not
considered in this paper because if the solution in (20) is out
of the range, the solution will be located on the boundary. This
two stage energy management will begin once any EV join the
system or leave the system. If no EV joins the system, this
algorithm will still work once every ten minutes. Notice that
this control instant here is the decision making control instant
which is different from the control instant of the DC/DC
converter, i.e., 1ms.

IV. SIMULATION RESULTS AND ANALYSIS

In this section,a two station case study is implemented to
verify the performance of the proposed game theory based
strategy.The simplest multiple PV-CS system is a two station
case and thus it is chosen as the first case study here. In
this case, the major difference between these two stations is
that the radiation profiles come from the typical summer and
winter day, respectively. In addition, the uncertainties from EV
SOC, capacity and incoming time are totally different. These
difference will cause the different charging power requirement
and thus different AACs of the storage battery tanks.

As shown in Fig. 4 (a), the response of the SOC, the
charging power of the first five EVs, and the number of EV
inside station are shown. It can be observed that all EVs
are charged at PEV,i,j,max at initial time and dynamically
determining their charging power distribution according to the
proposed game theory based strategy. All EVs will finally be
fully charged and the number of EV inside station is changing
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TABLE II
THE SINGLE STATION POWER DISTRIBUTION WITH TEN EV.

EV (No.) 1 2 3 4 5 6 7 8 9 10
pEV,i,j (W) 3.54e04 3.65e04 2.99e04 3.62e04 3.21e04 3.92e04 3.77e04 3.65e04 4.21e04 4.22e04
CEV,i,j (kWh) 83.66 75.94 73.33 72.43 73.95 78.38 75.33 72.93 784.24 84.37
SOCEV,i,j 0.84 0.74 0.87 0.65 0.82 0.45 0.59 0.25 0.34 0.41
ptotal,2 (W) 5.55e05 pb,2 1.20e05 ppv,2 (W) -2.55e05 pgrid,2 (W) 5.62e03

dynamically. As shown in Fig. 4 (b), the power exchange
between two stations follows the same track of the AAC
difference between two station while the ptotal,is follow the
track of the AACs. pbat,is basically cover most of the dynamic
power from the PV panel systems and EVs.

As shown in Table II, the charging power distribution in
station two at a random time instant is picked out. It can be
observed that the charging power distribution basically follow
the utility functions of EVs. The EV with higher CEV,i,j will
be charged with high power (No.1 and No.5) while the EV
with lower SOCEV,i,j will be charged with higher power
(No.3 and No.5).
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Fig. 4. The simulation results for two station case.

V. CONCLUSIONS

This paper proposes a hierarchical distributed energy man-
agement for multiple PV-CSs. The power distribution problem
is modelled as two level game, i.e., a cooperative game
in station level and a non-cooperative Stackelberg game in
EV level. The a cooperative and a generalized stackelberg
equilibrium are reached a consensus network based learning
algorithm. The objectives of the PV-CSs and EV owners
are designed to maintain the AAC of the storage battery
tank and to be charged with larger power level, respectively.
In the simulation, the two stations case is implemented to
verify both the effectiveness of the power distribution in EV
level and the consensus network based learning algorithm.
Meanwhile, a more complicated case, i.e., a five station case,
is implemented to verify the station level power distribution
and the performance against a comparison management.
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