A Flexible Distributed Approach to Energy Management of an Isolated Microgrid

Presenter: Songyang Han, Master Student

Authors: Songyang Han, He Yin,

Amro Alsabbagh, Chengbin Ma*

Affiliation: Univ. of Michigan – Shanghai

Jiao Tong Univ. Joint Institute

IEEE IES ISIE 2017, Jun. 21st, 2017, Edinburgh, UK

- Introduction
- Isolated Microgrid Modeling
- Normal Form Game
- Simulation
- Conclusions

- Introduction
 - Motivation
 - Concept Diagram
- Isolated Microgrid Modeling
- Normal Form Game
- Simulation Results
- Conclusions

Motivation

- The isolated microgrids have wide applications such as in avionic, automotive, marine industries and remote rural areas.
- Challenges in a proper energy management approach
 - The existence of multiple energy sources
 - Uncertain weather conditions
 - Demand fluctuations

http://new.abb.com/grid/projects/kodiak-island-microgrid http://www.euei-pdf.org/en/aeep/thematic-work-streams/sustainable-energy-southern-africa-forum-of-the-africa-eu-energy

Concept Diagram

- Introduction
- Isolated Microgrid Modeling
 - Environment
 - Topology
 - Models of Devices
- Normal Form Game
- Simulation
- Conclusions

Environment

Ref.: Y. Li and E. Zio, "Uncertainty analysis of the adequacy assessment model of a distributed generation system," Renew. Energy, vol. 41, no. 2, pp. 235–244, 2012.

Topology in Simulation

 The PV panels and WTs are emulated by Hardware-Inthe-Loop emulations, while the battery pack, UC pack and corresponding DC-DC converters are real devices.

Models of Devices

Wind Turbine: Kestrel e400i

PV Panel: SPR-X21-335-BLK

- Introduction
- Isolated Microgrid Modeling
- Normal Form Game
 - Utility Functions
 - -Nash Equilibrium
- Simulation
- Conclusions

Utility Functions

Utility functions quantify the degrees of preference across alternatives.

- WT and PV:
 - Maximize energy utilization ratio
- Battery Pack:
 - Extend cycle life
- UC Pack:
 - Maintain capability as an energy buffer

WT:
$$u_w = 1 - n_w (i_w - I_w^*)^2$$

PV:
$$u_p = 1 - n_p (i_p - I_p^*)^2$$

B:
$$u_{b1} = 1 - n_{b1}(i_b - \mu_{ib})^2$$

$$u_{\rm b2} = 1 - n_{\rm b2}(i_{\rm b} - I_{blast})^2$$

UC:
$$u_c = 1 - n_c (i_c - I_c^*)^2$$

$$i_c = \frac{i_l - i_w - i_p - (1 - D_b)i_b}{1 - D_c}$$

WT:
$$u_{wc} = w_w u_w + w_{cw} u_c$$

$$\mathbf{pV:} \quad u_{\mathrm{pc}} = w_p u_p + w_{cp} u_c$$

B:
$$u_{bc} = w'_{b1}u_{b1} + w'_{b2}u_{b2} + w_{cb}u_{c}$$

Nash Equilibrium

Best Response Functions:

$$\frac{\partial u_{\text{wc}}}{\partial i_{\text{w}}} = 0 \quad \frac{\partial u_{\text{pc}}}{\partial i_{\text{p}}} = 0 \quad \frac{\partial u_{\text{bc}}}{\partial i_{\text{b}}} = 0$$

$$i_{w} = k_{w} + k_{wp} i_{p} + k_{wb} i_{b}$$

 $i_{p} = k_{p} + k_{pw} i_{w} + k_{pb} i_{b}$
 $i_{b} = k_{b} + k_{bw} i_{w} + k_{bp} i_{p}$

$$k_{p} = \frac{2w_{p}n_{p}I_{p}^{*} + \frac{2w_{cp}n_{c}i_{l}}{(1 - D_{c})^{2}} - \frac{2w_{cp}n_{c}I_{c}^{*}}{1 - D_{c}}}{2w_{p}n_{p} + \frac{2w_{cp}n_{c}}{(1 - D_{c})^{2}}}$$

$$k_{pw} = \frac{-\frac{2w_{cp}n_{c}}{(1 - D_{c})^{2}}}{2w_{p}n_{p} + \frac{2w_{cp}n_{c}}{(1 - D_{c})^{2}}}$$

$$k_{pb} = \frac{-\frac{2w_{cp}n_{c}(1 - D_{b})}{(1 - D_{c})^{2}}}{2w_{p}n_{p} + \frac{2w_{cp}n_{c}}{(1 - D_{c})^{2}}}$$

$$i_{p} = \frac{(1 - k_{wb})(k_{p} + k_{pb}k_{b}) + (k_{pw} + k_{pb}k_{bw})(k_{w} + k_{bw}k_{b})}{(1 - k_{pb}k_{bp})(1 - k_{wb}k_{bw}) - (k_{wp} + k_{wb}k_{bp})(k_{pw} + k_{pb}k_{bw})}$$

- Introduction
- Isolated Microgrid Modeling
- Normal Form Game
- Simulation
 - -Simulation Results
 - Comparative Study
- Conclusions

Simulation Results

Evaluation Criteria:

$$\eta_{p} = \frac{\sum i_{p}}{\sum I_{p}^{*}},
\eta_{w} = \frac{\sum i_{w}}{\sum I_{w}^{*}},
\mu_{ib} = \frac{1}{N} \sum i_{b},
\sigma_{ib}^{2} = \frac{1}{N} \sum (i_{b} - \mu_{ib})^{2},
\mu_{Ec} = \frac{1}{N} \sum \left| \frac{1}{2} C v_{c}^{2} - \frac{1}{2} C (V_{c}^{*})^{2} \right|.$$

Comparative Study

Supervisor Control

Fig. 2. Schematic description of the operation modes.

Average Load Demand Control

- Battery pack: Average of the load demand
- UC pack: Dynamic part of the load demand

Ref.: F. Valenciaga and P. F. Puleston, "Supervisor control for a stand-alone hybrid generation system using wind and photovoltaic energy," IEEE Trans. On Energy Conversion, vol. 20, no. 2, pp. 398–405, 2005.

Results

Case 1: Normal weather

Case 2: Better weather

Case 3: Worse weather

Case	Approach	$\eta_p \ (\%)$	$\eta_w \ (\%)$	μ_{ib} (A)	$\sigma_{ib} (A^2)$	μ_{Ec} (J)
1	Game theory based Rule based	99.23 100	91.66 100	0.04	0.06	251.59 337.98
2	Game theory based Rule based	98.99 76.08	92.12 100	0.06	0.06	187.42 334.59
3	Game theory based Rule based	99.75	92.46 100	0.13 0.3	0.07	136.16 332.62

Icons from http://www.flaticon.com/

- Introduction
- Isolated Microgrid Modeling
- Normal Form Game
- Simulation
- Conclusions

Conclusions

- A normal form game is defined and formulated to solve the energy management of an isolated microgrid.
- The existence of Nash equilibrium is proved.
- The randomized environment data is utilized and compressed to 24 minutes.
- The proposed distributed control approach has a comparable performance to the rule based approach.
- The proposed approach is more flexible with uncertainties in weather conditions.

Thank You

Name: Songyang Han(韩松阳)

Email: hansongyang@sjtu.edu.cn

Web: http://umji.sjtu.edu.cn/lab/dsc