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Abstract:

In this paper, a general discussion on the controller design for transient response control is
first conducted based on the polynomial method. It is shown for general all-pole close-loop
systems, their step responses have zero or nearly zero overshoot under the nominal characteristic
ratio assignment [2.5,2,2,...]; while the time constant 7 determines the speed of response.
The control of the classical benchmark two-mass system is introduced as a case study, in
which the m-IPD control configuration is adopted. It is found the time constant 7 cannot be
arbitrarily specified under the m-IPD control configuration and the nominal characteristic ratio
assignment. The designed m-IPD controller demonstrates a sufficient damping performance.
Meanwhile, the large and negative derivative gain designed under the nominal characteristic
ratio assignment leads to a poor robustness. Through the complementary sensitivity function
analysis, the robustness of the polynomial-based m-IPD controller design is found to depend
on the term of (Kjs*? + K;s* + K}); while the characteristic ratio assignment and the time

constant determine the nominal time response of the close-loop control system.
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1. INTRODUCTION

It is well-known in the most control system problems, the
time responses are the final evaluation of the performance
of the control system. However, for the classical and mod-
ern control design, they are difficult to directly deal with
the transient response. On the other hand, there exists an
alternative approach called algebraic design using polyno-
mial expressions (i.e., the polynomial method), in which
controller is designed based on the characteristic polyno-
mial of the closed-loop control system. It was reported
that the assignment of so-called characteristic ratios in the
polynomial method had a strong co-relationship with the
damping (i.e. the overshoot) of a close-loop system; while
the speed of response relates with the time constant [Kim
et al. (2003)][Kim et al. (2002)]. Namely. the transient
response can be addressed from the characteristic ratios
and the time constant (the definitions can be found in
following sections). Naslin empirically observed these rela-
tionships in 1960s [Naslin (1969)]. Kessler developed the
polynomial method before Naslin and recommended that
the characteristic ratios should all be two [Kessler (1960)].
Manabe proposed the Coefficient Diagram Method (CDM)
based on Naslin’s findings and the Lipatov-Sokolov stabil-
ity criterion [Manabe (1998)][Manabe (2003)].
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Since the polynomial method is based on the closed-loop
characteristic polynomial, a general controller design and
discussion are possible. In addition, the configuration of
the controller is defined at the beginning. The coefficients
of the polynomial are then determined under certain
design criteria. Therefore, the polynomial method could
be applied in designing low-order controllers for various
control problems.

This paper firstly uses general all-pole close-loop systems
as examples to discuss the nominal characteristic ratio
assignment for the nonovershooting step response and
time constant selection for rising time adjustment. Then,
the benchmark two-mass system is introduced as a case
study for applying the polynomial method in a challenging
engineering problem, the vibration control of the two-
mass systems. The m-IPD controller is designed under the
nominal characteristic ratio assignment, in which the time
constant cannot be independently specified. Besides the
nominal time responses, the robustness of the controller
design is also discussed in order to confirm and improve the
practicability of the polynomial-method-based controller
design.

2. GENERAL ALL-POLE CLOSE-LOOP SYSTEMS
2.1 Owershoot

For a general all-pole close-loop system as
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its characteristic equation
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can be rewritten as an equation of characteristic ratios
vi (i=1,...,n—1) and time constant 7

1 1

ﬁ(m)” 4ot —(18)> 4+ (1) +1=0 (3)
TYn—1Vp—2--"1 n

where the so-called characteristic ratios are defined as
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and 7 is defined as
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respectively. As shown in (3), the time response of the
all-pole close-loop system is sped up by a factor of 1/,
which is straightforward from the Laplace transform of
time-scaled functions. Meanwhile, the other control design
criteria are solely determined by the characteristic ratios.

It has been reported that the set of characteristic ratios are
co-related with the damping of a close-loop system [Kim
et al. (2003)]. G(s) can be approved to have monotonically
decreasing magnitude of frequency response and thus small
overshoot in step response under the condition of ~; > 2
foralli =1,...,n—1 (refer to Appendix A). The influence
of each characteristic ratio can be evaluated by using the
system sensitivities to varying characteristic ratios, which
are defined as

5. (s) = 2CCUGCE)

fori=1,...,n—1 6
i/ ©

Taking a 5th-order system with the initial characteristic
ratio assignment of v; = 2 (i=1, ..., 4) as an example, it
can be seen that the characteristic ratios with lower indices
have a more dominant influence on the overall performance
(see Fig. 1).
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Fig. 1. Magnitude of sensitivity functions to the variation
of v;’s

The design of nonovershooting controllers is of interest
in order to establish a general baseline for the controller
design. Considering 1) the characteristic ratio assignment
of v > 2 (i = 1,...,n — 1) as a starting point; 2) the
dominant influence of low-index characteristic ratios, it is
straightforward to adjust the single characteristic ratio vy

(y1 > 2) while keep all other higher-index characteristic
ratios fixed and equal with two. Due to the difficulty in
finding exact analytical solutions for high-order systems,
the values of =7 are searched by numerical simulation
that enable nonovershooting step responses of the all-pole
close-loop systems (1). For the sake of simplicity, the time
constant 7 is taken as 1 in the simulation.

As shown in Fig. 2, it is interesting to find all the ~’s
are close to 2.5 despite various orders of the systems.
Therefore, a general and easy-to-remember baseline for
the controller design could be considered as having the
following characteristic ratio assignment

yr=25and vy, =2fori=2,...n—1 (7)

This nominal characteristic ratio assignment is actually
identical with and explains the standard form of the
CDM method, which was based on intensive experimental
studies [Kim et al. (2003)][Manabe (2003)]. The step
responses under nominal characteristic ratio assignment
[2.5 2 2 ...] demonstrate good transient responses with
zero or nearly zero overshoot, as shown in Fig. 3.
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Fig. 2. The values of v; for having nonovershooting step
responses of the general all-pole close-loop systems
(from the 4th-order to 10th-order). (a) v1. (b) Step
responses.
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Fig. 3. Step responses of the general all-pole close-loop
systems (from the 2nd-order to 10th-order) under
nominal characteristic ratio assignment [2.5 2 2 .. ].

2.2 Speed of Response

For the all-pole close-loop systems, the overshoot and
speed of response (i.e., the rising time) can be indepen-
dently specified, as explained in (3). The step responses
of the 5th-order all-pole close-loop system are shown in
Fig. 4, which are under the nominal characteristic ratio
assignment [2.5 2 2 2] and a time constant 7 varying from
0.25 to 2.
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Fig. 4. Step responses of the 5th-order all-pole close-loop
system with various 7.

For the above 5th all-pole close-loop system with a unity
time constant 7=1, its rising time is 1.0962. From (3),
it is straightforward to determine a time constant 7 that
enables a step response with specific rising time ¢, as

2
7= 1.0962

(8)

The similarity of the step responses for various order sys-
tems is shown in Fig. 3 under the nominal characteristic ra-
tio assignment [2.5 2 2 ...]; therefore, (8) can be a general
approximation to estimate the required time constant for
the other all-pole close-loop systems with various orders.

3. EXAMPLE: BENCHMARK TWO-MASS SYSTEM
3.1 Normalization of Two-mass Model

As shown in Fig. 5(a), the benchmark two-mass system is
usually modeled by two masses connected with a non-stiff
coupling shaft, where K is spring coefficient, J,, and J;
are the inertias of the drive and load sides, respectively.
In the typical benchmark two-mass control problem, only
the velocity of the drive side is assumed measurable,
whereas driving torque, load torque and the velocity of the
load side are not measurable [Sugiura et al. (1996)][Lee
et al. (2007)]. The controller design needs to be able to
control the velocity of the load side within well-suppressed
vibrations by using only the velocity feedback of the
drive side. Various approaches have been proposed for
the two-mass system control during the past decade such
as the feedback of imperfect derivative of the torsional
torque estimated by a disturbance observer [Sugiura et al.
(1996)], a two-degree-of-freedom control structure using
an observer-based state feedback compensator [Dhaouadi
et al. (1993)], p-synthesis based on a descriptor form
representation [Hirata et al. (1996)], a series anti-resonance
finite-impulse response compensator [Vukosavi¢ et al.
(1998)], the intelligent control using fuzzy and neural
network [Lee et al. (2007)][Wang et al. (2002)][Orlowska-
Kowalska et al. (2007-1)][Orlowska-Kowalska et al. (2007-
2)][Orlowska-Kowalska et al. (2010)], etc.

Meanwhile, the low-order PID controllers and their modi-
fications are predominant in industry. Improvement on the
low-order controller design would significantly contribute
to real engineering applications. As aforementioned, the
polynomial method can be applied in the design of the
low-order controller for the benchmark two-mass system.
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Fig. 5. The modeling of the benchmark two-mass system.
(a) Model. (b) Block diagram.

As shown in Fig. 5(b), the transfer function of the two-
mass system between driving torque T, and angular
velocity of drive side w,, is derived as

sQ—i—wg

Pls) = —> "%
() Ims(s? + w?2)

(9)

where w, and w, are the resonance frequency and anti-
resonance frequency

11 K,
r = K| — =5 |y Wa = 5
w <Jm+Jl> w, 7,

(10)
respectively. The transfer function (9) can be normalized
by replacing the Laplace operator s with s*=s/w,

g 1 s2+1

P(s)=L > % T
(%) I W q8*3 + s*

(11)

where ¢ is the inertia ratio defined as the ratio of drive
inertia to total inertia
I

= — 12
Im + J; ( )

q

For the sake of simplicity, the normalized two-mass system
model can be taken as

S*2+1

Pl = e

(13)

in which the normalized resonance frequency and anti-
resonance frequency are

(14)

respectively. Similarly, it is straightforward from the
Laplace transform of time-scaled functions that the real
response is sped up by a factor of w,.

As shown in Fig. 6, with a larger ¢, the two normalized
resonance frequencies, w’ and w}, become close, i.e., a
stronger tendency of pole/zero cancellation. It is known
the pole/zero cancellation leads to a poor robustness of a
closed-loop control system [Folly (2008)]. On the other
hand, a lower resonance frequency w; correspondingly



200

150

q=0.1t00.9
with 0.2 interval

100

50

Magnitude (dB)

10 10 10' 10
Frequency (rad/s)

Fig. 6. Bode magnitude plots for the normalized two-mass
model

requires a larger damping; therefore, additional phase lag
needs to be provided by the controller, which eventu-
ally sacrifices robust stability margin. Namely, the perfor-
mances of damping and robustness in the two-mass system
control essentially contradict each other, especially when
the inertia ratio ¢ is large. A fundamental issue in the con-
troller design of the two-mass system is to achieve a proper
tradeoff between the two performances. The polynomial-
method-based controller design would be desirable because
of its capability to explicitly incorporate the factor of
damping.

3.2 m-IPD Controller Design

As shown in Fig. 7, the m-IPD controller configuration
is applied in the velocity control of two-mass systems.
Unlike the classical PID controllers, an alternative configu-
ration called setpoint-on-I-only configuration is adopted to
smooth the discontinuity of the reference command w, by
the integral (i.e., the I controller) [Chen (1993)]. This spe-
cial PID controller is usually named IPD controller in order
to distinguish from the classical PID configurations. And
the prefix “m” (i.e., modified) refers to the additional first-
order low-pass filter 1/(Tys + 1) in the m-IPD controller.
As shown in (14), a larger inertia ratio ¢ causes a lower
resonant frequency w; (= 1/,/q) that requires a larger
damping for vibration suppression. With the additional
low-pass filter and the D controller, m-IPD controller is
expected to provide a more sufficient damping than IP
controller. By comparing (13) with (11), the controller
parameters K, K;, K4 and Ty can be calculated as

Jm a
K,=K; (15)
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q
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q
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T,=-4 18
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where K7, K7, Kj and T are the controller parameters
designed by using the normalized model (13).

Similarly, the closed-loop transfer function of the m-IPD
control loop is
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Fig. 7. Block diagram of m-IPD velocity control of the
normalized two-mass system.
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The relationship between the coefficients and the con-
troller parameters is described as
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For the above nonhomogeneous matrix equations (26), it
has a unique solution provided the rank of its coefficient
matrix is as equal as the rank of its augmented matrix; in
addition, the two ranks should also be equal with four, i.e.,
the number of unknown parameters K7, K, Kj and T}.
Therefore, it can be found the coeflicients of the close-
loop characteristic equation must satisfy the following
relationship

ag—1—ap—(ag —q)=0 (27)
as —a; —as/qg=0 (28)
With (21)(23)(25)(27), ag is solved as
l—q
ag = L7-27 12 37—47]_ (29)
71 Y3Y3Y1

In order to have a positive ag (i.e., a positive K}), the
upper and lower limits of 7 are

4
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respectively.
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It can be seen the value of 7 cannot be arbitrarily specified
if the requirement on damping (i.e., the nominal character-
istic ratio assignment) must be satisfied. Under the m-IPD
control configuration, the overshoot and speed of response
in the two-mass system control cannot be independently
adjusted. 72 has real and positive solutions under the
nominal characteristic ratio assignment [2.5 2 2 2] if and
only if
A=0*—4ac>0 (33)
where a, b and ¢ are the quadratic coefficient, the linear
coefficient and the constant term of the quadratic equation
(32), respectively. From (33), it can be found
1
q=> 1 (34)
For the two-mass systems with small ¢’s, the IP controller
has been approved to be sufficient [Ma et al. (2012)].
Therefore, in this paper, the m-IPD controller design is
mainly discussed for large ¢’s. The two positive solutions
of 7 with various ¢ are shown in Fig. 8. The m-IPD-based
controller design has two solutions of the time constant,
71 and Ty, to satisfy the nominal characteristic ratio
assignment. Combining with the limits of 7 in (30)(31),
the smaller time constant 7, can meet the requirement for
all the ¢’s.

Fig. 8. Solutions of 7 versus ¢ under nominal characteristic
ratio assignment.

After specifying the time constant 7, the coefficients of
the characteristic equation can be determined using the
nominal characteristic ratio assignment (refer (20)-(25)).
The unique solution of the m-IPD controller parameters
is then calculated by solving the nonhomogeneous matrix
equations, whose the coefficient matrix and the augmented
matrix have same rank of four under the time constant
7. The step velocity responses of the nominal two-mass
systems are shown in Fig. 9 with various inertia ratio q.
All the step responses demonstrate an excellent damping
performance, i.e. nearly zero overshoots. The speed of
response is actually accelerated with a large ¢, which is
explained by the smaller 75 for larger ¢’s in Fig. 8.

3.8 Robustness Analysis

As shown in Fig. 6, the stronger tendency of pole/zero
cancellation with a larger inertia ratio ¢ leads to a poor ro-

Amplitude

Amplitude

Amplitude

©
m

E—

10 15
Time (seconds)

(a)

10
Time (seconds)

(b)

12

0.8

0.6

0.4

0.2

Amplitude

12

0.8

0.6

04

7
0.2 v
.

0 B 10 15 20 0 5 10 15 20
Time (seconds) Time (seconds)

(©) (d)

Fig. 9. Step responses of the drive and load velocities by
the m-IPD control designed using 7 and the nominal
characteristic ratio assignment. (a) g=1/4. (b) ¢=0.4.
(c) ¢=0.6. (d) ¢=0.8.

bustness of a closed-loop control system. A proper tradeoff
between the performances of damping and robustness must
be discussed during the controller design, especially when
the inertia ratio ¢ is large. As aforementioned, the transient
response (i.e., overshoot and rising time) can determined
from the time constant 7 and the characteristic ratios
vi (i = 1,...,n) of the close-loop characteristic equa-
tion; while the robustness is also affected by the specific
controller configuration. For the robustness analysis, the
equivalent transformation of the m-IPD control blockdia-
gram is conducted, as shown in Fig. 10. It is interesting to
find the m-IPD control configuration is actually equivalent
with the general two-parameter control configuration.

For the equivalent control configuration in Fig. 10(b), its
loop transfer function is

s*2 41 Kjs®+ Kis* + K

L) = g (39
And its complementary sensitivity function is
2 K k2 - .
T(s) = a55*5 (—fs— a;*‘l*)—(kfidgz% izpsiz 4—; fz(lzs)* + ag (36)
where the coefficients a; (i = 0,...,5) are determined

by 72 and the nominal characteristic ratio assignment
(refer (20)-(25) and (32)). As shown by Bode plots of
L(s) and T'(s) in Fig. 11 and Fig. 12 respectively, the
m-IPD control designed under the nominal characteristic
ratio assignment [2.5, 2, 2, 2] has a poor robustness
performance, especially when ¢ is large. For example, when
q is equal with 0.85 in the figures, the phase margin of
L(s) is nearly zero; the large magnitude of T'(s) in high-
frequency range also indicts the poor robustness stability
of the m-IPD controller design. As shown in Fig. 13,
the step responses with variation of ¢ further verify the
deteriorated robustness when ¢ is large.
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As shown in Fig. 10(c), the complementary sensitivity
function of the general two-parameter control configura-
tion is

b(s)Gn(s)
a(8)Gar(s) + b(s)Gn(s)

T(s) = (37)

Fig. 13. Step responses with ¢ variation. (a) -10% (Nom-
inal ¢=0.25). (b) +10% (Nominal ¢=0.25). (c) -10%
(Nominal ¢=0.8). (d) +10% (Nominal ¢=0.8).

The denominator of T'(s) is identical with the charac-
teristic polynomial, which is determined by the nominal
characteristic ratios. In its numerator, Gy (s) is the numer-
ator of the plant transfer function. Namely, the design of
b(s) determines the value of the complementary sensitivity
function. In the m-IPD controller design, b(s) is equal with
the term of (Kjs**+ Ks*+ K}) in Fig. 10(b). For a good
robustness, the magnitude of (K}s*? + K s*+ K;) should
be small enough to suppress the complementary sensitivity
function T'(s), especially in high-frequency range. Figure
14 shows the values of K, K, Kj and T} designed under
the nominal characteristic ratio assignment [2.5, 2, 2, 2]
and the corresponding time constant 7. For a larger ¢, a
stronger damping is required due to the lower resonance
frequency w; (see Fig. 6). A large negative K is de-
signed to provide sufficient damping, i.e., the introduction
of phase lag rather than phase lead compared with the
conventional derivative controllers.
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Fig. 14. The m-IPD controller parameters versus g under
nominal characteristic ratio assignment.

However, the peak in the complementary sensitivity func-
tion T'(s) is caused by its large negative numerator term
K}s*2. The large and negative derivative gains K’s also
mean the positive feedback of the derivative control signal.
As aforementioned, in the two-mass system control design,
an essential issue is to achieve a proper tradeoff between



damping and robustness performances. Although the nom-
inal characteristic ratio assignment can provide a sufficient
damping for large ¢’s, the robustness performance is sig-
nificantly sacrificed. In order to guarantee robustness, the
damping performance must be lowered to some degree.
Solutions as future works could be considered as 1) having
a larger time constant 7 to improve damping by slowing
down of the response speed; 2) letting characteristic ratios
with higher indices such as 74 or even 73 be determined
by the specified 7; while keeping v, and 7» as their nom-
inal values. Namely, the robustness performance could be
recovered by certain degree of sacrifice on the damping
performance.

4. CONCLUSION

In this paper, a general discussion on the transient re-
sponse control is firstly conducted based on the polyno-
mial method. It is shown for the general all-pole close-
loop systems, their step responses have zero or nearly
zero overshoot under the characteristic ratio assignment
[2.5,2,2,...]; while the time constant 7 determines the
speed of response, i.e., the rising time. The control of the
classical benchmark two-mass system is introduced as a
case study for the application of polynomial method in a
challenging engineering problem. Due to the tendency of
pole/zero cancellation in the normalized two-mass model,
a tradeoff relationship exists between damping and robust-
ness performances in the controller design, especially when
the inertia ratio is large.

The m-IPD control configuration is adopted for two-mass
system control. The characteristic ratio assignment [2.5
2 2 2] is used as a nominal set for the controller design
due to its good damping performance. It is found the time
constant 7 cannot be arbitrarily specified under the m-IPD
control configuration and the nominal characteristic ratio
assignment. The designed m-IPD controller demonstrates
a sufficient damping performance even when ¢ is large.
Meanwhile, the robustness analysis and step responses
with ¢ variation indict its poor robustness especially with
large ¢’s. The large and negative derivative gains designed
under the nominal characteristic ratio assignment lead to a
poor robustness. Through the complementary sensitivity
function of the general two-parameter control configura-
tion, it is found the robustness of the polynomial-based
m-IPD controller design depends on the term of (Ks*? +
Kps*+ K *); while the characteristic ratio assignment and
the time constant determine the nominal time response of
the close-loop control systems.

It would be interesting to modify the choice of character-
istic ratio assignment and the time constant in order to
improve the robustness of the controller design. The other
future works may include applying the polynomial method
in the controller design of more complicated benchmark
systems, such as the general inverted pendulum. Expand-
ing the polynomial method to design multi-input-multi-
output (MIMO) control systems would further extend its
applications.
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Appendix A. RATIOS FOR NO RESONANT PEAK
For the all-pole transfer function G(s) represented by (1),

its squared magnitude in frequency domain is
2

GG = Glw)G (=) = 55 (A1)
where
Qw) = [an(jw)" + ... + arjw + aq]
- Nan(—jw)" + ... + a1(—jw) +ag]  (A.2)
Let
Q(w) = Sy Agw” (A.3)
It can be found
Aop1 =0 (A.4)
Therefore
Qw) = SR Agpw™ (A.5)
where

Ao = (af — 2ap—1ak+1) + 2(Ak—20k42 — Qh—30k+3)
+ 2(ak_4ak+4 — ak_5ak+5)... (AG)

With all the characteristic ratios v; > 2 (i =1,...,n—1),
it is obvious that

ai —2ay_1ap41 >0 (A7)

In addition, from (3) aj can be represented as

Tkao

(A.8)

ap =
2 3 k—1
V=1V —2Vk—3--N1

Then,

Ak —mAk+
— 7 = Ye+mVe4+m—1---Yk—m > 1 (AQ)
Ak —m—10k4+m+1

ie.
Af—mOk+m — Ok—m—10k+m+1 > 0 (AlO)

From (A.7) and (A.10), it can be concluded that all the
terms in (A.6) are larger than 0, i.e. Ag > 0. Namely,
the value of Q(w) monotonously increases with w, which
means monotonous decrease of |G(jw)|?. Thus, |G(jw)| has
no resonant peak when all the characteristic ratios ; are
larger than two. Therefore, the theorem is approved.



