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This paper discusses the application of polynomial method
in the transient response control of a benchmark two-mass
system. It is shown that transient responses can be directly
addressed by specifying the so-called characteristic ratios
and the generalized time constant. The nominal character-
istic ratio assignment is a good starting point for controller
design. And the characteristic ratios with lower indices have
a more dominant influence. Two practical low-order con-
trol configurations, the IP (Integral-Proportional) and m-
IPD (modified-Integral-Proportional-Derivative) controllers
are designed. The primary design strategy of the controllers
is to guarantee the lower-index characteristic ratios to be
equal to their nominal values, while the higher-index char-
acteristic ratios are determined by the interaction with the
generalized time constant and the limits imposed by zeros,
a specific control configuration, etc. The demonstrated re-
lationship between the transient responses and the assign-
ments of characteristic ratios and generalized time constant
in simulation and experiments explains the effectiveness of
the polynomial-method-based controller design.

1 Introduction
In most control problems, time response is the final eval-

uation of the performance of the control system. However,
there is limited work done for control parameter design di-
rectly relating to the transient characteristics. It is a continu-
ing interest in designing controllers that have clear physical
meaning in the transient response of a closed-loop system.
Besides the well-known classical and modern control theo-
ries, there is an alternative approach called algebraic design
using polynomial expressions (i.e., polynomial method). In
the method, the so-called characteristic ratios are reported to
have a strong relationship with the damping (i.e., the over-
shoot) of a closed-loop system, while the speed of response
relates to generalized time constant [1] [2]. Unlike the trial-

and-error-based design techniques in classical control theory,
the transient time response can be explicitly controlled by
specifying the characteristic ratios and the generalized time
constant. Naslin empirically observed these relationships in
1960s [3]. An important contribution is attributed to Man-
abe, who proposed the Coefficient Diagram Method (CDM)
based on Naslin’s findings and the Lipatov-Sokolov stabil-
ity criterion [4]. Using the CDM method, he designed con-
trollers for many successful industrial applications.

Since polynomial method uses the closed-loop charac-
teristic polynomial, a generalized controller design and dis-
cussion are possible. In its design procedure, control con-
figuration is defined at the beginning. The coefficients of
the characteristic polynomial are then determined under a
specific assignment of characteristic ratios and generalized
time constant. Therefore, the polynomial method is suitable
as a general approach to design low-order controllers. This
characteristics is desirable for real industrial applications. In
this paper, the transient response control of a classical bench-
mark two-mass system is discussed due to the generality of
the control problem and the accessible experimental facility.
Many electric drive systems in industry can be modeled as
two-mass systems from traditional applications such as steel
rolling mills and elevators to the latest ones in electric vehi-
cles and wind turbines. The analysis of the two-mass system
also gives a good starting point and fruitful results for dealing
with more complex systems.

The benchmark two-mass control problem is challeng-
ing because only the velocity of the drive side is assumed
measurable, whereas driving torque, load torque and the ve-
locity of the load side are not measurable [5]. Various ap-
proaches have been proposed for the two-mass system con-
trol during the past decade. Generally speaking, the con-
troller design of the two-mass system falls into a category of
control problems treated by modern control theory that usu-
ally leads to complicated high-order controllers with difficul-



ties in weighting function selection, parameter tuning, etc.
Meanwhile, the low-order PID controllers and their modifi-
cations are predominant in industry. Improvements on the
design of low-order controllers using the polynomial method
would be both theoretically and practically important.

This paper presents new results to directly control the
transient response of a real torsion system via the poly-
nomial approach [7]. The torsion system is modeled by
a benchmark two-mass system, in which the tendency of
pole/zero cancellation and limitations imposed by jω-axis
zeros make the controller design difficult, especially when
the ratio of drive inertia to total inertia (i.e. inertia ra-
tio) is large. All-pole closed-loop systems are first used
for a preliminary discussion on the adjustment of overshoot
and the speed of response by specifying characteristic ra-
tios and generalized time constant, respectively. Nominal
characteristic ratio assignments (CRAs) are exactly deter-
mined for nonovershooting step responses. Then the de-
sign of two low-order controllers, IP (Integral-Proportional)
and m-IPD (modified-Integral-Proportional-Derivative) con-
trollers are discussed based on the assignment of character-
istic ratios and their interactive relationship with the gener-
alized time constant, while in Ref. [7], the two controllers
are simply designed under the nominal CRAs, and thus fixed
generalized time constants too. This improvement enables a
better tradeoff between damping and robustness. Finally, all
the theoretical analysis and controller design are confirmed
experimentally using the laboratory torsion test bench.

2 Laboratory Torsion System
As shown in Fig. 1, the test bench is a torsion system

that emulates a two-mass system. The drive torque is trans-
mitted from drive servomotor to the shaft by gears with a
gear ratio of 1:2. Under the condition of close-to-zero gear
backlash, the torsion system is usually modeled as a well-
known benchmark two-mass system as shown in Fig. 1(b),
where Ks is the spring coefficient, while Jm and Jl are the in-
ertias of the drive and load sides, respectively. It should be
noticed that the internal damping of the shaft is sometimes
also taken into consideration. The transfer function between
driving torque Tm and angular velocity of the drive side ωm
can be derived as

P(s) =
s2 +ω2

a

Jms(s2 +ω2
r )
, (1)

where ωr and ωa are the resonance frequency and anti-
resonance frequency,

ωr =

√
Ks

(
1

Jm
+

1
Jl

)
and ωa =

√
Ks

Jl
, (2)

respectively.
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Fig. 1. The torsion test bench. (a) Experimental setup. (b) Two-
mass model.

The model in Eqn. (1) can be further normalized as

Pn(s∗) =
s∗2 +1

qs∗3 + s∗
(3)

by replacing the Laplace operator s with s∗=s/ωa. Here q is
the so-called inertia ratio defined as

q =
Jm

Jm + Jl
. (4)

The normalized resonance frequency and anti-resonance fre-
quency are then

ω∗
r =

1
√

q
and ω∗

a = 1, (5)

respectively.
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Fig. 2. Bode magnitude plots for the normalized two-mass model.

As shown in Fig. 2, with an increasing q the two res-
onance frequencies, ω∗

r and ω∗
a tend to become close, i.e.,

exhibiting the tendency of pole/zero cancellation. It is well
known that the pole/zero cancellation leads to poor robust-
ness of a closed-loop control system. In addition, the lower



the resonance frequency ω∗
r , the larger the required damping,

which may lead to a smaller stability margin and/or a nar-
rower bandwidth. For the controller design when q is large,
it is essentially important to have a balanced tradeoff among
damping, robustness and the speed of response.

3 Preliminary Discussion
In order to establish a baseline for dealing with more

complex systems, ideal all-pole closed-loop systems are first
discussed,

G(s) =
a0

ansn +an−1sn−1 + ...+a1s+a0
. (6)

Its characteristic polynomial P(s) can be rewritten as

P(s) =
1

γn−1γ2
n−2...γ

n−1
1

(τs)n + ...+
1
γ1
(τs)2 +(τs)+1, (7)

where characteristic ratios γi (i=1,. . .,n-1) and generalized
time constant τ are defined as

γ1 =
a2

1
a0a2

, γ2 =
a2

2
a3a1

, . . . ,γn−1 =
a2

n−1

an−2an
, (8)

τ =
a1

a0
, (9)

respectively. It can be seen that the time response of the all-
pole closed-loop system is sped up by a factor of 1/τ, while
all other time-domain specifications are solely determined by
the characteristic ratios.

For the all-pole systems, overshoot is determined by the
set of the characteristic ratios. G(s) has monotonically de-
creasing magnitude in frequency response, and thus small
overshoot under the condition that all the characteristic ratios
are larger than two [1]. And the influence of each character-
istic ratio on the overall performance can be evaluated by its
system sensitivity

Sγi(s) =
∂G(s)/G(s)

∂γi/γi
for i = 1, . . . ,n−1. (10)

As illustrated in Fig. 3, the lower-index characteristic ratios
have a more dominant influence because they affect more
coefficients of the characteristic polynomial P(s).

Considering 1) the characteristic ratio assignment of
γi > 2 (i=1, . . ., n-1) as a starting point; 2) the dominant
influence of low-index characteristic ratios, overshoot could
be adjusted using a single characteristic ratio γ1 (i.e., γ1 ≥ 2)
while all higher-index characteristic ratios are fixed at two.
Due to the difficulty in finding the exact analytical solutions
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Fig. 3. Magnitude of the sensitivity functions Sγi(s) for the fifth-
order system (all the nominal values of γi are equal to two).

for systems of order higher than two, the minimum values
of γ1 for nonovershooting step responses are numerically de-
termined and listed in Tab. 1. Then a nominal CRA can be
defined as

γ1 = γ∗1 and γi = 2 for i = 2, ...,n−1. (11)

For the all-pole closed-loop systems, the overshoot and
the speed of response can be independently specified [see
Eqn. (7) and Fig. 4]. However, for a more general non-all-
pole system such as the two-mass system, the effect of the
pair of the jω-axis zeros impose additional limitations on the
assignment of both the characteristic ratios and the general-
ized time constant.

Table 1. Minimum γ1 for nonovershooting step responses.

System order 3 4 5 6 7 8

γ∗1 2.61 2.53 2.48 2.48 2.48 2.48
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Fig. 4. Step responses of the fifth-order all-pole closed-loop system
with a varying τ from 0.25 to 2 at 0.25 interval.

4 Low-order Controller Design
Two low-order control configurations, the IP and m-IPD

controllers are adopted here for the velocity control of the
two-mass system, as shown in Fig. 5. These special PID
controllers are widely used in servo industry because the dis-
continuity of the reference command ωre f can be smoothed
by the integral controller. The low-pass filter 1

Tds+1 is neces-
sary for implementing the derivative controller, and it is in a
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Fig. 5. Control configurations for the velocity control of the two-
mass system. (a) IP controller. (b) m-IPD controller.

location that does not introduce any additional zero into the
closed-loop transfer function. Considering the fundamen-
tal influence of poles, the nominal CRA in Eqn. (11) could
also provide a good starting point for the controller design of
the non-all-pole two-mass system, as illustrated in following
sections.

4.1 IP Controller
The closed-loop transfer function for the IP feedback

control loop is

Gn(s∗) =
K∗

i (s
∗2 +1)

qs∗4 +K∗
ps∗3 +(1+K∗

i )s∗2 +K∗
ps∗+K∗

i
. (12)

The characteristic ratios are

γ1 =
K∗2

p

K∗
i (1+K∗

i )
, (13)

γ2 =
(1+K∗

i )
2

K∗2
p

, (14)

γ3 =
K∗2

p

q(1+K∗
i )

, (15)

respectively. A controller design strategy could be to guar-
antee γ1 = γ∗1 and γ2 = 2 for the fourth-order closed-loop sys-
tem, while letting γ3, the characteristic ratio with the highest
index be jointly determined by q, K∗

p and K∗
i . K∗

i , K∗
p and

thus the generalized time constant τ can then be calculated
as

K∗
i =

1
2γ∗1 −1

, K∗
p =

1
√

2
(

1− 1
2γ∗1

) , τ =
2γ∗1√

2
. (16)

As shown in Fig. 6(a)(b), sufficient damping (i.e., nonover-
shooting) is provided when q is smaller than or equal to 0.31,
because γ1 = γ∗1, γ2 = 2 and γ3 ≥ 2, while the step responses
become oscillatory at larger q’s due to the decreasing γ3. The
identical τ under the IP controller design explains the same
speed of the responses. The speed of step responses can be
adjusted by letting the two higher-index characteristic ratios,
γ2 and γ3 be determined by a variable τ, while keeping γ1
equal to γ∗1. The lower bound of τ for a positive K∗

i can then
be found as

τ >
√

γ∗1. (17)

However, deviations of γ2 and γ3 from their nominal value of
two cause overshoot at a smaller generalized time constant.
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Fig. 6. Unity velocity step responses. (a) q=0.31 (IP control). (b)
q=0.8 (IP control). (c) q=1/4 (m-IPD control). (b) q=0.8 (m-IPD con-
trol).

Meanwhile, the closed-loop transfer function of the IP
control loop has two zeros ± j. It is known that jω-axis
zeros place a lower bound on the achievable settling time
of a closed-loop system, i.e., the fastest speed of response
that avoids an excessive overshoot [6]. The smooth step re-
sponses of the drive velocity ωm in Fig. 6(a)(b) indicate that
the determined generalized time constant τ is well above the
lower bound imposed by the zeros of ± j. However, the quan-
titative limitations imposed by the two jω-axis zeros are not
yet fully understood and worthy of future research.

4.2 m-IPD Controller
The closed-loop transfer function of the m-IPD control

can be derived as

Gn(s∗) =
K∗

i (s
∗2 +1)

a5s∗5 +a4s∗4 +a3s∗3 +a2s∗2 +a1s∗+a0
, (18)



where

a5 = qT ∗
d =

1
γ4γ2

3γ3
2γ4

1
τ5a0 (19)

a4 = q+K∗
d =

1
γ3γ2

2γ3
1

τ4a0 (20)

a3 = T ∗
d +K∗

p =
1

γ2γ2
1

τ3a0 (21)

a2 = 1+K∗
i +K∗

d =
1
γ1

τ2a0 (22)

a1 = K∗
p = τa0 (23)

a0 = K∗
i . (24)

The following relationship can then be found as


a0
a1
a2 −1
a3
a4 −q
a5

=


0 1 0 0
1 0 0 0
0 1 1 0
1 0 0 1
0 0 1 0
0 0 0 q

 ·


K∗

p
K∗

i
K∗

d
T ∗

d

 . (25)

Eqn. (25) has a unique solution provided the ranks of both its
coefficient matrix and augmented matrix are equal to four,
i.e. the number of unknown controller parameters. There-
fore, the coefficients of the characteristic polynomial must
satisfy the following equations

a2 −1−a0 − (a4 −q) = 0 (26)
a3 −a1 −a5/q = 0. (27)

Equations (20)(22)(24)(26) yield

a0 =
1−q

1
γ1

τ2 − 1
γ3γ2

2γ3
1
τ4 −1

. (28)

In order to have a positive a0, the upper and lower limits of τ
(τmin < τ < τmax) are

τmax, min = γ1γ2

√√√√1±
√

1− 4
γ3γ2

2γ1

2
γ3 (29)

respectively, whereas for a5 to be positive, a3 must be larger
than a1, i.e., the lower limit of τ is further restricted to

τmin =
√

γ2γ2
1. (30)

Similarly, τ can be determined using Eqs. (19)(21)(23)(27)

1/q
γ4γ2

3γ3
2γ4

1
(τ2)2 − 1

γ2γ2
1
(τ2)+1 = 0. (31)

The value of τ cannot be independently specified if the nom-
inal CRA for the fifth-order closed-loop system is to be guar-
anteed. For real and positive solutions of τ2, it can be found
that

q ≥ 1
4
. (32)

The smaller one in the two positive solutions of τ is within
the limits defined in Eqs. (29)(30) for all the q’s larger than
one quarter. With the determined generalized time constant
and the nominal CRA, the unique solution of the four m-IPD
controller parameters can be simultaneously calculated in-
stead of depending on the conventional trial-and-error-based
techniques. The unity step velocity responses under the m-
IPD control are shown in Fig. 6(c)(d).

Although m-IPD control under the nominal CRA pro-
vides sufficient damping, the controller design largely ig-
nores the requirement on robustness because only the damp-
ing is emphasized [7]. As shown by the Bode plots of the
loop transfer functions in Fig. 7, the m-IPD control pro-
vides a limited phase margin when q is large such as q=0.8.
The infinity-norm of the complementary sensitivity function,
∥ T (s) ∥∞, also shows a similar trend of the robustness with
an increasing q [see Tab. 2]. In order to recover robust-
ness performance, necessary sacrifices on damping and/or
response speed are required. This can be achieved by al-
lowing γ4 to vary, which has the smallest overall influence.
The generalized time constant τ can then be arbitrarily spec-
ified between τmin and τmax. As shown in Fig. 8, the poor
robustness under the nominal CRA can be explained by the
large positive K∗

d , i.e. the positive feedback of the D control
signal. It is interesting to notice that with an increasing τ,
damping is becoming to be mainly provided through a large
T ∗

d and the negative K∗
d eventually becomes positive. On the

other hand, an excessively large τ leads to instability due to a
negative coefficient a0 in the characteristic polynomial. This
classical tradeoff observed here well demonstrates the gener-
ality of the polynomial method, because its design procedure
depends on the closed-loop characteristic polynomial instead
of a specific control configuration.
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Table 2. Infinity-norms of complementary sensitivity function.

q 0.3 0.4 0.5 0.6 0.7 0.8

∥ T (s) ∥∞ 1.22 1.35 1.54 2.42 4.34 8.33
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Fig. 8. m-IPD controller parameters versus generalized time con-
stant τ (q = 0.8).

5 Experimental Results
By the different combination of the numbers of the

flywheels at the drive and load sides, the inertia ratio q
that the laboratory torsion system is capable of emulating
ranges from 0.29 to 0.80. A thin shaft (4mm diameter with
Ks=2.1204Nm/rad) is chosen, which enables the low reso-
nance and anti-resonance frequencies of the two-mass sys-
tem. The actual dynamics is obviously much more com-
plicated than the dynamics described by the ideal two-mass
model, especially with the existence of gear backlash [see
Fig. 1]. This modeling error can be used to verify the robust-
ness of the low-order controller design against nonlinearity.

The experimental velocity responses are shown in
Figs. 9-12, in which a large load disturbance torque 2.5N·M
is applied at 1.0 sec except in Fig. 10. The experimental re-
sults (black) well match the simulation results (red) except in
Fig. 11(b) due to the gear backlash nonlinearity. This obser-
vation validates the above theoretical analysis and controller
design. The IP control becomes ineffective at a large q such
as 0.80 because γ3 decreases greatly from its nominal value
of two [see Fig. 9]. Its speed of response can be adjusted
by specifying the generalized time constant τ; however, only
γ1 can be exactly assigned as its nominal value. The oscilla-
tory responses in Fig. 10, when τ is small, can be explained
by γ2 < 2. The m-IPD control under nominal CRA is effec-
tive when q is small (such as 0.29 in Fig. 11(a)); however,
at large q’s the necessity of taking negative derivative gain
causes poor robustness against gear backlash and disturbance
torque as shown in Fig. 11(b). The m-IPD control’s robust-
ness performance can be improved by having a smaller γ4
and thus a larger τ, i.e., less damping and slower speed of
response [see Fig. 12].

6 Conclusions
The application of the polynomial method in the tran-

sient response control of a benchmark two-mass system is
discussed in this paper. Two practical low-order control con-
figurations, the IP and m-IPD controllers are designed. Un-
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Fig. 9. Velocity step responses under IP control with γ1=2.53 and
γ2=2. (a) q=0.29. (b) q=0.80.
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Fig. 10. Velocity step responses under IP control with q=0.29,
γ1=2.53 and τ from 2 to 5 at 1.0 interval. (a) Drive velocities. (b)
Load velocities.
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(b)

Fig. 11. Velocity step responses under m-IPD control with nominal
CRA. (a) q=0.29. (b) q=0.80.

like the ideal all-pole systems, additional limits arise due to
the pair of the jω-axis zeros of the two-mass system and the
specific control configurations. It is found that the charac-
teristic ratios and the generalized time constant cannot be
independently specified. And the jω-axis zeros and stabil-
ity requirement place bounds on the achievable generalized
time constant. The demonstrated relationship between the
transient responses and the assignments of the characteristic
ratios and the generalized time constant explains the effec-
tiveness of the polynomial-method-based controller design,
i.e. its capability of directly addressing time-domain speci-
fications such as overshoot and the speed of response during
controller design.

The future works may include applying the polynomial
method in the controller design of more complicated and re-
alistic systems, such as robots and other industrial applica-
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(b)

Fig. 12. Velocity step responses under m-IPD control with γ1=2.48,
γ2=2, γ3=2 and specified τ’s at q=0.80. (a) τ=5.5. (b) τ=6.5.

tions. It is also of practical importance to investigate a gen-
eral design scheme for the control of higher-order systems
such as a three-mass system, in which direct equation solving
may either be infeasible or too complicated. In addition, ex-
tending the polynomial method to the design of multi-input-
multi-output (MIMO) control systems would broaden its ap-
plications.
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