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Polynomial-Method-Based Design of Low-Order
Controllers for Two-Mass Systems

Chengbin Ma, Member, IEEE, Junyi Cao, and Yue Qiao

Abstract—In this paper, low-order integral-proportional
(IP), modified IP (m-IP), and modified integral-proportional-
derivative (m-IPD) controllers are designed for the speed
control of a two-mass system based on a normalized model
and polynomial method. In order to have sufficient damping,
the parameters of the controllers are determined through
characteristic-ratio assignment under the principle that all the
characteristic ratios should be larger than two. It is found that
for an inertia ratio smaller than one-third, an IP controller can
effectively suppress the vibrations with proper damping, while
for a relatively larger inertia ratio, an m-IP controller (i.e., IP
controller with an additional low-pass filter) is effective. m-IPD
control is theoretically effective for a large inertia ratio. However,
the necessity of a negative derivative gain leads to a very poor
robustness. Both simulation and experimental results verified the
effectiveness of the designed IP and m-IP controllers when the
inertia ratio is relatively small. For the m-IPD controller, its poor
robustness is demonstrated by introducing a large gear backlash
in experiments, while the IP and m-IP controllers show promising
results of a much better robustness against the gear backlash
nonlinearity.

Index Terms—ILow-order controller, polynomial method, speed
control, two-mass system.

1. INTRODUCTION

LECTRIC motors are one of the most widely used ac-

tuators in industry today, which can be found nearly in
all the electromechanical systems, such as robots, machine
tools, hard disks, etc. The proliferation of electric motors is
still continuing, particularly in the area of alternative energy
systems such as electric vehicles and wind turbine generators.
The capability of the high-bandwidth speed control of electric
motors greatly improves the responses of the drive systems.
However, it may also easily excite mechanical vibrations, which
are the major obstacles for achieving the high-performance
control of the systems. These mechanical vibrations are caused
by several mechanical elements such as elastic shaft, gear
backlash, and coupling. The mechanical vibrations can be
observed in the speed control of many electric drive systems
from the traditional applications such as in steel rolling mills
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and elevators to the latest ones in electric vehicles and wind
turbines, etc. [1].

The aforementioned systems are usually being modeled as
multimass systems. However, the analysis of a typical bench-
mark, a two-mass system, also gives a good starting point
and fruitful results for dealing with more complex systems. In
the typical benchmark two-mass control problem, it is usually
assumed that only the velocity of the drive side is measurable,
whereas the driving torque, load torque, and the velocity of
the load side are not measurable. The designed controller
needs to control the velocity of the load side within well-
suppressed vibrations using only the velocity feedback of the
drive side. The vibration suppression for the two-mass system
has attracted the attention of many researchers during the
past decade. A two-degree-of-freedom control structure using
an observer-based state feedback compensator was proposed
to suppress the mechanical vibrations in rolling mill drives
[2]. A vibration suppression control method was reported,
which is based on the feedback of the imperfect derivative of
the torsional torque estimated by a disturbance observer [3].
A p-synthesis with a descriptor form representation was pro-
posed for an active vibration control of the two-mass system,
which can achieve both the robust stability and robust distur-
bance suppression [4]. A series antiresonance finite-impulse
response compensator was applied to filter torque command
signal for a passive vibration control in a high-performance
speed servo drive [5]. The controller structures and their
parameters were discussed based on the ratio between load
and drive inertias and delay in speed control loop for an active
damping of torsional vibrations [6].

In recent years, intelligent control has begun to be applied in
the vibration control of the two-mass system. A dynamically
generated fuzzy neural network was applied to control the
torsional vibrations of tandem cold-rolling mill spindles, which
can be modeled as a two-mass system [7]. A universal approx-
imator based on a radial basis function network was introduced
to the speed control of the two-mass system, which has a
self-learning capability compared with the inverse model-based
disturbance observer [8]. It was reported that an adaptive neuro-
fuzzy controller can also be applied to suppress the torsional
vibrations of the two-mass system [9], while neural networks
were introduced to estimate the torsional torque and the load-
side speed for the damping of the torsional vibrations of the
two-mass system [10]. A sliding-mode neuro-fuzzy controller
was used as an adaptive speed controller to damp the torsional
vibrations in the two-mass system [11].

As explained earlier, generally, the controller design of the
two-mass system falls into control problems treated by modern
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control theory, which usually leads to complicated high-order
controllers with difficulties in weighting function selection,
parameter tuning, etc. [2]-[5]. However, the dominant control
structures working in the electric drive industry are based on
the low-order PID controllers and their modifications. It is both
theoretically and practically important to further improve the
PID design for the vibration suppression control of the two-
mass system, which would significantly contribute to the real
industrial applications.

In addition to the well-known classical control and modern
control for the controller design, there is actually a third ap-
proach called algebraic design approach that uses polynomial
expressions (i.e., polynomial method). In this approach, the
type and order of the controller and its corresponding character-
istic polynomial of the closed-loop control system are defined
at the beginning. Then, the coefficients of the polynomial
can be determined considering certain design specifications.
Therefore, in this paper, the polynomial method is introduced
to design the low-order PID controllers via the so-called
characteristic-ratio assignment [12], [13]. It was observed that
the set of characteristic ratios has a strong relationship with the
damping of a system. Furthermore, the transient response can
also be directly addressed based on the relationships between
the characteristic ratios and time-domain responses. Naslin
empirically observed these relationships in the 1960s [14]. An
important contribution is attributed to Manabe, who proposed
the coefficient diagram method (CDM) based on Naslin’s find-
ings and the Lipatov—Sokolov stability criterion [15]. Using
the CDM method, he designed controllers for many successful
industrial applications.

The purpose of this paper is to explore the possibility of using
the polynomial method to improve the low-order PID controller
design for the vibration suppression control of the two-mass
system. The controller design with various PID structures,
integral-proportional (IP), modified IP (m-IP), and modified
integral—proportional—derivative (m-IPD), is discussed by spec-
ifying a certain set of characteristic ratios, when the inertia ratio
(i.e., the ratio of drive inertia to the total inertia) varies. From a
theoretical viewpoint, the research on the polynomial-method-
based controller design is still in its beginning stage. This paper
represents one of the initial efforts to systematically apply
the polynomial method in a challenging benchmark problem,
the vibration suppression of the two-mass system. Theoretical
analysis and simulation results in this paper were confirmed by
experimental tests using a laboratory torsion test bench.

II. NORMALIZATION AND STABILITY ANALYSIS

The two-mass system can be modeled as two masses being
connected by a nonstiff coupling shaft as shown in Fig. 1, where
K is the spring coefficient and J,,, and J; are the inertias of the
drive (including the drive motor) and load sides, respectively.
From its block diagram, the transfer function between the
driving torque 7,,, and the angular velocity of the drive side
wy, can be derived as

32+w§

P(S> = Jms(52+w$)

(1)
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Fig. 1. Modeling of the two-mass system. (a) Model. (b) Block diagram.

where w, and w, are the resonance frequency and antiresonance
frequency, respectively,
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In order to have a generalized discussion, the transfer
function P(s) can be normalized by substituting the original
Laplace operator s with s*, which is equal with s/w,. The
transfer function after normalization is

g 1 s2%2+1
JTTL Wa q5*3 + S*

“

where ¢ is the inertia ratio which is defined as the ratio of drive
inertia to the total inertia

Im

- Im 5

q

As shown in Fig. 2, the three types of PID controllers, IP con-
troller, m-IP controller, and m-IPD controller, are discussed for
the speed control of the two-mass system. Unlike the classical
PID controllers, an alternative configuration called setpoint-on-
I-only configuration is adopted to smooth the discontinuity of
the reference command w,. by the integral (i.e., the I controller).
In order to distinguish these special PID controllers from the
classical PID controllers, they are usually named as IP or IPD
controllers. And the prefix “m” (i.e., modified) refers to the
introduction of the first-order low-pass filter 1/(Tys + 1) in
the controllers, as shown in Fig. 2(b) and (c). For the sake of
simplicity, the normalized model for the two-mass system is
taken as

8*2+1

P,(s") = ———.
n( ) qs*3—|—s*

(6)



MA et al.: POLYNOMIAL-METHOD-BASED DESIGN OF LOW-ORDER CONTROLLERS FOR TWO-MASS SYSTEMS 971

or + Ki + Tm
_Ak S _T
> Kp
Mm
(a)
+ .
oor o Ki + 1 Tm
_4 S I Tds+1
» Kp
om
(b)
+ Ki + 1 Tm
Of —»O—>» —— — >
_4 S _ Tds+1
+
> Kp
+
» Kds
®m

©

Fig. 2. PID controllers for the speed control of the two-mass system. (a) IP
controller. (b) m-IP controller. (¢) m-IPD controller.

By comparing (6) with (4), the controller parameters K, K;,
K, and T can be calculated as

« JmWa
K, =K (7)
q
2
K = K Ima ®)
q
*Jm
Kqg=K;— )
q
T*
T,=-4 (10)
Wq

where K ;, K}, K}, and T; are the controller parameters
designed using the simplified normalized model (6). Compared

TABLE 1
ROUTH’S TABULATION
o g A+K) K
3
s* Ky K} 0
2 1+ K¥)—q K} 0
*1 K;(liq)
s T K —q 0 0
5*0 K 0 0

k2

response is sped up by a factor of w,, which is straightforward
from the Laplace transform of time-scaled functions.

The closed-loop transfer function for the IP feedback control
loop is

B Ki(s2 4 1)

gt + Kyt (14 K)) s+ Kps* + K
(1)

From the Routh’s tabulation for the characteristic equation, as

shown in Table I, it is interesting to notice that the stability

condition is

Gn(s")

0<g<1 (12)

with positive K and K. Obviously, for the two-mass system,
the inertia ratio ¢ is always a positive number smaller than one.
However, 1 — ¢ can be considered as a stability margin. It is
clear to see that a large inertia ratio ¢ will lead to a deteriorated
stability.

For the m-IP control loop, its closed-loop transfer func-
tion is (13), shown at the bottom of the page. Again, from
Routh—Hurwitz criterion, the closed control loop is stable if and
only if K; — T3 K; > 0and 1— ¢q > 0 with positive K, K/,
and T7.

Similarly, the closed-loop transfer function of the m-IPD
control loop is (14), shown at the bottom of the page. Unlike
the IP and m-IP control loops, its stability condition is very
complicated. As in the following sections, the m-IPD controller
is only needed when ¢ is larger than 0.6. However, the positive
feedback of the D control signal (i.e., a negative K ;) becomes
necessary, which makes the m-IPD controller impractical for
real applications due to its very poor robustness.

III. DESIGN VIA CHARACTERISTIC-RATIO ASSIGNMENT

For a Hurwitz polynomial with real positive coefficients

with the time response of the normalized system, the real p(s) = aps™ + 18"+ Fars+ ag (15)
K(s?+1
Guls) = oty (13)
T;qs +qs* + (T; + K3) s + (1 + K) 52 + K" + K
K (s?+1
Gn(s?) i+ ) (14)

CqTist 4 (q+ Ky) s+ (T + K;) 593+ (1+ Kf + Kj) 52 + Kis* + K
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the so-called characteristic ratios are defined as
2 2 2

a a a;_
N=— == (16)
apasz aszay Ap—20n
Let G(s) be an all-pole transfer function
G(s)= % =— % 450
p(s)  ans" +an—18" 14 ...+a1s+ag
A7)

and -; be the characteristic ratios of p(s). Then, G(s) has a
monotonically decreasing magnitude of frequency response if
v, > 2 forall i =1,2,...,n — 1; therefore, the step response
overshoot is guaranteed to be small [12]. This result can be
utilized to achieve the desired damping by assigning the char-
acteristic ratios +y;, in which the larger values of ; correspond
to a greater damping.

For the two-mass system, additional limitations arise from
the presence of the two resonance modes (i.e., one pair of
jw-axis zeros and one pair of jw-axis poles), which makes it
difficult to obtain a sufficient damping of the control system.
Compared with the all-pole systems, larger characteristic ratios,
particularly a larger v;, would be required in the controller
design for the two-mass system because the characteristic ratios
with lower indices ¢ have a dominant influence on time-domain
specifications such as the overshoot [13].

A. IP Controller

The design of IP controller, namely, determining K and
K, can be based on the characteristic-ratio assignment. Due
to the existence of the resonance modes, the challenge for the
control design of the two-mass system is to maintain a balanced
tradeoff between stability and sufficient damping for resonance
vibration suppression, particularly when the inertia ratio ¢ is
large, while robustness against parameter variations, modeling
error, and disturbance is also important.

From the characteristic equation of the IP control loop (11),
the characteristic ratios are

_K5 ., 18
NTRKAL K (18)
(1+ K3)?
_UH )T, |
="pem > (19)
K2
Y3 (20)

=——P 59
q(1+K7})

where the condition of ; > 2 (¢ = 1, 2, 3) is desired for having
a sufficient damping. Through multiplying each side of (19) by
the corresponding side of (20), it can be found that

1+ K7
4
while based on (18) and (19), K should be smaller than one-

third. Therefore, in order to let all the characteristic ratios ~y; be
larger than two, the inertia ratio ¢ should be restricted as

q< 21

1
q< 3 ~ 0.333. (22)
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Fig. 4. 71,72, and 3 with the selected K and K7;.

A graphical method can also be introduced to plot the entire
possible combinations of (K7, i), by which all the character-
istic ratios +y; are larger than two. As shown in Fig. 3, all these
combinations are located in the overlapped area formed by the
areas of v; > 2, yo > 2, and 3 > 2. Among the characteristic
ratios, only ~s is affected by the inertia ratio q. With an
increasing ¢, the overlapped area will shrink and eventually
disappear. The intersection point between the curves of v, = 2
and v = 2 is (1/3, 1/8/9). In addition, if ¢ is larger than one-
third, there will be no overlapped area.

In order to guarantee sufficient damping, the combinations
of (K, K,) for having zero-overshoot step time responses are
searched by numerical simulation, in which ¢ increases from
0.1 to 0.33. Since a larger K is desired for a faster time
response, K is decreased from one-third to zero during the
searching. Then, with the specific ¢ and K, the values of
K, can be determined by letting v1 = 2, 72 = 2, and 3 = 2.
Namely, the desired combinations of K and K; are selected,
by which the time responses have zero overshoot and K
takes on its maximum possible value. As shown in Fig. 4, it
is interesting to notice that with the selected K} and K, 71
varies around 2.5 for various ¢’s, and the desired 7, is almost
two. Only when ¢ is close to one-third, the 72 and 3 become
smaller than two. This observation is actually identical with the
standard form of the CDM method, which is based on intensive
experimental studies [15].

Therefore, the determination of an initial parameter setting
for the IP controller can be simplified as choosing v, = 2.5 and
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Fig. 5. Velocity step responses with various ¢’s by IP control. (a) ¢ = 0.1.

(b)g=1/3.(c)g=0.5.(d) g = 0.6.

72 = 2. Namely, based on (18) and (19), K7 and K can be
selected as follows when ¢ < 1/3:

)
K="
p 4\/§

(23)

The step responses of the normalized closed-loop IP control
systems are shown in Fig. 5 with the aforementioned ini-
tial setting of K and K. When ¢ is small, the designed
IP controller demonstrates a good performance with zero or
nearly zero overshoot and strong robustness against the vari-
ation of ¢q. However, with larger ¢, such as 0.5 and 0.6,
it can be seen that the IP controller is not able to provide
sufficient damping any more, and the step responses become
oscillatory.

B. m-IP Controller

In order to improve the damping when inertia ratio ¢ is
larger than one-third, a low-pass filter can be added to the IP
controller. Such IP controller with a low-pass filter is called
m-IP controller, as shown in Fig. 2(b). Again, from the char-
acteristic equation (13), the characteristic ratios for the m-IP
control loop are

K*Z
=— P 24
() 9
1+ K7)?
7 :7[{5 e )T* (25)
S (B +1T7)
BT K
o 1 @7)

T (T + K

973

LetT; = 2K (x > 0)and v; > 2 (i = 1, 2, 3, 4), then

K, 28
KA1k (28)

(14 K7)?
L (29)

K2(1+z)

K2(1 + )2
Zp VT g 30
q(1+K7) G0
q > 9. G1)

v K2 (14 x)

From (28) and (31), the following inequality can be obtained:

q

A
K(l+Ek)e(lta)

(32)

Similarly,
1+KH(1+x)
q

which is obtained from (29) and (30). Therefore, the relation-
ship between = and K can be represented as

>4 (33)

1
K} < 6 (34)
In addition, from (30) and (31), the range of g is
20K*(1+x) < q< Im (35)
Namely,
K32 (14x)?
2(1+K7) 14z o1 (36)

2K2(1+2) 4e(l+K;)

Combined with the relationship described in (34), the range for
x can be derived as

1
O<e<—. (37)
4
With (29) and (30), the maximum ¢ can be found
1+ K (1
< M (38)

4

Therefore, the biggest x, one-fourth, can be selected to have the
largest g. Namely, 7}; can be determined by K, as
* 1 *

T, = ZK e 39)
With (34), the maximum q that satisfies y; > 2 (¢ = 1, 2, 3, 4)
can be found as

1+ K (1 2
w < j ~ 0.391.

4 64 (40)

q<

As same as the IP controller design, K is decreased from
its maximum value one-fourth to zero during the search of the
time responses with zero overshoot and maximum possible K.
Similarly, with the specific ¢ and K and the relationship of
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T} = K, /4, the values of K, are calculated by letting v, = 2,
Y2 = 2, v3 = 2, and 4 = 2. As shown in Fig. 6, the values of
the desired ~; and o are also around 2.5 and 2, respectively.
Therefore, the initial parameter setting for the m-IP controller
can be determined by letting 77} = K;/4 andvy; = 2.5,79 =2
in (24) and (25), respectively. Namely

By

K; = .
4

— 41
i= 5 41

5

The characteristic ratios by using the aforementioned initial
setting are shown in Fig. 7 with various inertia ratios ¢. It can
be seen that -3 decreases dramatically and becomes smaller
than 2 when q is larger than 0.372. However, the characteristic
ratios with lower indices 4, v; and 7, are taken as 2.5 and 2,
respectively, which have a dominant influence on the overshoot.
Unless 73 is too small, sufficient damping can still be provided
by the designed m-IP controller. In addition, since

1 4
K;T;K;;’l\/ﬁ(14.21> >0 (42)
the designed m-IP control system is stable as explained in the
previous section of stability analysis.

The step responses of the normalized m-IP control systems
are shown in Fig. 8 under the initial setting of K, K;’ and T},
which are determined by the aforementioned criterion. Com-
pared with the IP control, the damping is obviously improved.
Even for ¢ larger than 25/64, such as ¢ = 0.5, the time response
is satisfactory with small overshoot and short settling time.

C. m-IPD Controller

In order to improve damping for a large inertia ratio g, the D
controller can be added as shown in Fig. 2(c). For the m-IPD
control loop, the characteristic ratios are

K*Q
1= P 43
T TR 0+ K+ K “3)
1+ K:+ K%)?
y = O EA R @
K (T; + K})
2
T + K*
. (*d p)* * 45)
(+ K3 (1+ K+ K})
+ K%)?
vy = (q d) (46)

i (T + k)

From the analysis of the IP and m-IP controller design, it can
be found that assigning the characteristic ratios to be y; = 2.5,
Yo = 2, v3 = 2, and 4 = 2 would give desired time responses
with nearly zero overshoot and short settling time. The four
parameters of m-IPD controller, K, K7, K, and T}, can be
directly calculated by solving the nonlinear equations under
the aforementioned characteristic-ratio assignment. As shown
in Fig. 9, the time responses for a large ¢, such as 0.7 and 0.9,
are significantly improved with the m-IPD controllers, which
indicates a more sufficient damping of the designed control
system.

However, the values of K calculated by letting v; = 2.5,
Yo = 2,73 = 2, and 4 = 2 are negative numbers, which means
a positive feedback of the D control signal (see Fig. 10). For a



MA et al.: POLYNOMIAL-METHOD-BASED DESIGN OF LOW-ORDER CONTROLLERS FOR TWO-MASS SYSTEMS 975

N
=]

= N W oW b
o Qo O o
s
\
|
i
y
- N W w
o o O »
N

-
(=]
-
o

f —--O
/ —®m

0 5 10 15 20 0 5 10 15 20
time (second) time (second)

(a) (b)
40
35
30
25 ;
20 /)
15 4

10

L&
~

velocity step response (rad/sec)
o S
velocity step response (rad/sec)
N
o

o
o

velocity step response (rad/sec)
velocity step response (rad/sec)

0 5 10 15 20 0 5 10 15 20
time (second) time (second)

(©) (@
Fig. 9. Comparison of velocity step responses by m-IP and m-IPD control
with a large q. (a) ¢ = 0.7 (m-IP). (b) ¢ = 0.7 (m-IPD). (c) ¢ = 0.9 (m-IP).
(d) ¢ = 0.9 (m-IPD).

0.5

% O
= 0t
e
C
©
x O
x
& ——
. a-05f el 1
N2 — R
------- K" Treeml
----- Kd' Tl
---Td

0.75 0.8 0.85 0.9

q

-1 .
0.6 0.65 0.7

Fig. 10. Parameters of m-IPD controller calculated by characteristic-ratio
assignment.

large g, a greater damping, i.e., phase lag rather than phase lead,
is needed to suppress the resonance vibrations; therefore, the
negative K; becomes necessary. The positive feedback would
lead to a very poor robustness of the control system. Although
the m-IPD control has satisfactory time responses in simulation,
it is impractical for real applications as verified in the following
experimental results.

IV. EXPERIMENTAL RESULTS

The configuration of the whole experimental system is shown
in Fig. 11. The test bench is controlled by a PC with a
1.6-GHz Pentium IV CPU and a 512-MB memory. Real-time
operating system RTLinux is used to guarantee the timing
correctness of the real-time tasks. The control programs are
written in RTLinux C threads, which can be executed with
the strict timing requirement of control sampling time. A 12-b
Analog-to-Digital/Digital-to-Analog multifunctional board is
used with 10-us conversion time per channel. All the experi-
ments were carried out under the sampling time of 0.001 s.

Control PC

W

\ Drivers

Configuration of the experimental system.

Fig. 11.

load flywheel friction load adjustment

(changeable)

driving flywheel

load servomotor bearing (changeable)
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a encoder

driving servomotor [ tacho-generator
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Fig. 12. Experimental setup of the test bench.

TABLE II
SHAFT ELASTIC COEFFICIENTS WITH VARIOUS DIAMETERS

Shaft: 4mm 2.4504(Nm/rad)

Shaft: Smm | 3.9207 x 10'(Nm/rad)
Shaft: 12mm | 1.9849 x 10%(Nm/rad)
Shaft: 16mm | 6.2731 x 10%(Nm/rad)
Shaft: 20mm | 1.5315 x 10°(Nm/rad)

The test bench is a torsional system, which can be used
to emulate the two-mass system. As shown in Fig. 12, the
flywheels of drive side and load side are connected with a
long torsional shaft, while the drive torque is transmitted from
the drive servomotor to the shaft by gears with a gear ratio
of 1:2 (N, = 2). The two motor encoders (8000 pulses/rev)
are used as rotary velocity sensors with coarse quantization
+0.7854 rad/s.

For the torsional system, its parameters of gear inertia, load
inertia, shaft elastic coefficient, friction load, and gear backlash
angle are adjustable. For the sake of simplicity, in the experi-
ments, the friction load and gear backlash angle were being set
to their minimum values except in the last experiment for the
verification of m-IPD control’s robust performance. There are
five shafts with different diameters for emulating various the
shaft elastic coefficients K, as shown in Table II.
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TABLE III
INERTIAS OF FLYWHEELS AND MOTORS ON THE DRIVE AND LOAD SIDES

Drive servomotor J,,0 | 6.5338 x 10~4(Kg - m?)
Drive side basic J,,,; 6.1342 x 10~3(Kg - m?)
Drive flywheel J,,,2 3.6573 x 10~ 3(Kg - m?) (each)
Load side basic .Jjo 4.1062 x 1073 (K g - m?)

(including load servomotor)
3.7878 x 10~3(K g - m?) (each)

Load flywheel J;

45 ‘ . .

w B
. o

N W
«a O

velocity response (rad/sec)
S o 3
€
k|

)]

0.5 1 1.5 2
time (second)

(=]
o

Fig. 13. Velocity step responses with small ¢ = 0.2751 (IP control with zero
drive flywheel and five load flywheels).

The inertia ratio g can be adjusted by changing the number of
attached flywheels on the drive and load sides. The inertia for
each component is shown in Table III. The parameters for the
emulated two-mass system can be calculated as

Im1 +md,,
T = Jmo + % 47)
Jio + nJ
g = ZOTQB 48)

where m and n are the numbers of the flywheels on the drive
and load sides, respectively. There are two drive flywheels and
five load flywheels in total. Therefore, the range of inertia ratio
q that can be emulated is from 0.2751 to 0.7964.

The maximum torque that the drive servomotor can deliver
is £3.84 N-m. In order to avoid a large saturation of the
output torque, the thinnest shaft (4 mm) is chosen, by which
the two-mass system has the lowest antiresonance frequency
wq. Therefore, the real controller parameters K, K;, K4, and
T, are also small when converting from their normalized values
[refer to (7)—(10)]. It should be noticed that the real dynamics
of the torsion test bench is obviously much more complex than
the dynamics of the ideal two-mass system, particularly with
the existence of friction and gears. The experimental velocity
responses with various ¢’s are shown in Figs. 13 and 14. Due
to the unmodeled dynamics, the experimental results slightly
deviate from the time responses in the simulation. However, the
experimental results still clearly show that for a small ¢, 0.2751,
the IP controller is enough; for a larger ¢, 0.6705, the m-IP
controller is more effective; while for a large ¢, 0.7964, both the
IP and m-IP controllers are not effective anymore. However, the
responses of the m-IP control are better because the controller
can provide greater damping than the IP controller.
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Fig. 14. Velocity step responses with large ¢. (a) ¢ = 0.7964 (IP control with
two drive flywheels and zero load flywheel). (b) ¢ = 0.7964 (m-IP). (c) ¢ =
0.6705 (IP control with two drive flywheels and one load flywheel). (d) ¢ =
0.6705 (m-IP).
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Fig. 15. Robustness of controllers against gear backlash (¢ = 0.7964).

(a) m-IPD without backlash. (b) m-IPD with backlash. (c¢) IP with backlash.
(d) m-IP with backlash.

The experimental results in Fig. 15 clearly verify the poor
robustness of the m-IPD controller with the negative K 4. With
the existence of a large gear backlash, the m-IPD control system
actually becomes unstable, while the IP and m-IP control show
a much better robustness against the gear backlash nonlinearity,
even their time responses are not satisfactory when the inertia
ratio ¢ is large, such as ¢ = 0.7964.

V. CONCLUSION

In this paper, various low-order PID controllers, the IP,
m-IP, and m-IPD controllers, have been designed for the speed



MA et al.: POLYNOMIAL-METHOD-BASED DESIGN OF LOW-ORDER CONTROLLERS FOR TWO-MASS SYSTEMS 977

control of the two-mass system based on the normalized model
and polynomial method. In order to have sufficient damp-
ing, the parameters of the controllers are determined through
characteristic-ratio assignment under the principle that all the
characteristic ratios should be larger than two. Additional lim-
itations arise from the presence of the two resonance modes,
which requires larger characteristic ratios, particularly the ratios
with lower indices. In addition, with an increasing inertia ratio,
it becomes more difficult to provide sufficient damping through
the design of control system.

Based on the aforementioned principle of characteristic-
ratio assignment, it is found that for an inertia ratio smaller
than one-third, the IP controller can effectively suppress the
vibrations with proper damping, while for a relatively larger
inertia ratio, the m-IP controller with an additional low-pass
filter is effective. For the IP controller design, the initial pa-
rameters can be determined by letting v; = 2.5 and v, = 2,
while for the m-IP controller, the design criterion of v; = 2.5,
Y2 =2, and T = K}, /4 is proposed. The m-IPD control is
theoretically effective for a large inertia ratio. However, the
necessity of a negative derivative gain leads to a very poor
robustness. Both simulation and experimental results verified
the effectiveness of the designed IP and m-IP controllers when
the inertia ratio is relatively small. For the m-IPD controller,
its poor robustness is demonstrated by introducing a large gear
backlash in experiments. At the same time, the IP and m-IP
controllers show promising results of a much better robustness
against the gear backlash nonlinearity.

Future works may include a more systematic discussion on
the robustness of the IP and m-IP controllers designed by
the aforementioned polynomial method, as well as the jus-
tification of the controller design by using classical analysis
techniques such as root locus, Bode plot, etc. Comparison
with the controllers designed by the existing approaches could
further enhance the usefulness of the polynomial method. Since
the IP controller can be considered as a special m-IP controller
with zero-order low-pass filter, the controller design for the
two-mass system could be generalized as designing a m-IP
controller with the proper selection of low-pass filters. As
explained earlier, for a large inertia ratio, the m-IP controller
with the first-order low-pass filter becomes less effective. In this
case, a fractional-order m-IP controller, which has a low-pass
filter with the order between one and two, might provide a better
tradeoff between stability and damping. The generalization of
controller design for the two-mass system speed control based
on fractional-order control could be an interesting research
topic.

The corelationship between the characteristic ratios and the
damping of the control loop makes the polynomial method
promising as a general design method for controlling other
more complicated and realistic systems, such as the two-
mass system with the availability of the load velocity feed-
back in which the actuator and sensor are noncollocated. In
the new application area of motion control, electric vehicles,
with the control bandwidth, increase due to the substitution
of engines with electric motors, the vibration control of the
electrified drive systems might be a good target for applying the
method.
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