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Fractional Order Control (FOC), in which the controlled systems and/or controllers are described by fractional order
differential equations, has been applied to various control problems. Though it is not difficult to understand FOC’s
theoretical superiority, realization issue keeps being somewhat problematic. Since the fractional order systems have
an infinite dimension, proper approximation by finite difference equation is needed to realize the designed fractional
order controllers. In this paper, the existing direct discretization methods are evaluated by their convergences and time-
domain comparison with the baseline case. Proposed sampling time scaling property is used to calculate the baseline
case with full memory length. This novel discretization method is based on the classical trapezoidal rule but with scaled
sampling time. Comparative studies show good performance and simple algorithm make the Short Memory Principle
method most practically superior. The FOC research is still at its primary stage. But its applications in modeling and
robustness against non-linearities reveal the promising aspects. Parallel to the development of FOC theories, applying
FOC to various control problems is also crucially important and one of top priority issues.
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1. Introduction

The concept of Fractional Order Control (FOC), in which
the controlled systems and/or controllers are described by
fractional order differential equations, is by no means new. In
fact, it has a long history. The concept was firstly introduced
by Tustin for the position control of massive objects half a
century ago, where the actuator saturation requires sufficient
phase margin around and below the crossover frequency (1).

However, FOC was not widely incorporated into control
engineering mainly due to the conceptually difficult idea of
taking fractional order, the existence of so few physical ap-
plications and the limited computational power available at
that time (2). In last few decades, researchers pointed out that
fractional order differential equations could model various
materials more adequately than integer order ones and pro-
vide an excellent tool for describing dynamic processes (3)～(5).
The fractional order models need fractional order controllers
for more effective control of the dynamic systems (6). This
necessity motivated the renewed interest in various applica-
tions of FOC (7)～(10). Thanks to the rapid development of com-
putational power, modeling and realizing FOC systems also
became much easier than before.

By changing FOC controller’s fractional order, control sys-
tem’s frequency response can be adjusted directly and contin-
uously. This advantage can lead to more straightforward de-
sign of robust control systems against uncertainties. Though
it is not difficult to understand FOC’s theoretical superior-
ity, realization issue keeps being somewhat problematic and
perhaps is one of the most doubtful points for applying FOC.
Since the fractional order systems have an infinite dimension,
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proper approximation by finite difference equation is needed
to realize the designed fractional order controllers.

Frequency-band fractional order controller can be realized
by broken-line approximation in frequency-domain, but fur-
ther discretization is required for this method (11). As to direct
discretization, several methods have been proposed such as
Short Memory Principle (4), Tustin Taylor Expansion (12) and
Lagrange Function Interpolation method (8), while all the ap-
proximation methods need truncation of the expansion series.
How to determine the baseline case, which is reliable and
easy to understand, is essentially important for the evaluation
of the proposed methods in time-domain, especially from the
viewpoint of engineering.

At the same time, it is well known that the discrete inte-
ger order controllers have clear time-domain interpretation
as changing ratio or the area of sampled input to time, which
significantly simplify their use in various applications. How-
ever all the above direct discretization methods for fractional
order controllers have a common weak point of lacking clear
time-domain interpretation. A clear time-domain interpreta-
tion is crucial for the applications of FOC.

The authors proposed a novel and clear time-domain in-
terpretation of discrete fractional order controllers as having
sampling time scaling property (13). In this paper, this inter-
pretation is used to achieve a reliable and easy method for
calculating the baseline case for discrete FOC control sys-
tems. With the established baseline, the discretization meth-
ods are evaluated in time-domain. The article is organized
as follows: in section 2, the mathematical definitions of frac-
tional order calculus are introduced; in section 3, some typ-
ical existing direct discretization methods are reviewed; in
section 4, a novel and reliable discretization method is pro-
posed based on the discrete fractional order controllers’ sam-
pling time scaling property; in section 5, comparative studies
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are carried out with the discretization methods and the base-
line case calculated by the proposed novel method; finally, in
section 6, conclusions are drawn.

2. Mathematical Definitions

The mathematical definition of fractional derivatives and
integrals has been a subject of several different approaches
(3) (4). The most frequently encountered definition is called
Riemann-Liouville definition, in which the fractional α or-
der integrals are defined as

t0 I
α
t f (t) := t0 D−αt f (t) =

1
Γ(α)

∫ t

t0

(t − ξ)α−1 f (ξ)d(ξ)

· · · · · · · · · · · · · · · · · · · · (1)

while the definition of fractional order derivatives is

t0 D
α
t f (t) =

dγ

dtγ
[
t0 D
−(γ−α)
t f (t)

]
· · · · · · · · · · · · · · · · · · · · (2)

where

Γ(x) ≡
∫ ∞

0
yx−1e−ydy · · · · · · · · · · · · · · · · · · · · · · · · · · · (3)

is the Gamma function, t0 and t are limits and α (α > 0 and
α ∈ R) is the order of the operation. γ is an integer that satis-
fies γ − 1 < α < γ.

The other approach is Grünwald-Letnikov definition:

t0 D
α
t f (t) = lim

h→0
nh=t−t0

h−α
n∑

r=0

(−1)r

(
α

r

)
f (t − rh) · · · · · · · · (4)

where binomial coefficients are(
α

0

)
= 1,

(
α

r

)
=
α(α − 1) . . . (α − r + 1)

r!
· · · · · · · · · (5)

3. Existing Discretization Methods

3.1 Short Memory Principle For simplification, the
controller is discrete fractional α order derivative (0 < α < 1)
or integral (−1 < α < 0).

The discretization method is based on the observation that
for Grünwald-Letnikov definition, the values of the binomial
coefficients near the “starting point” t = 0 is small enough to
be neglected or “forgotten” for large t. Therefore the princi-
ple takes into account the behavior of x(t) only in the “recent
past”, i.e., in the interval [t − L, t], where L is the length of
“memory”:

0Dαt x(t) ≈ t−LDαt x(t), (t > L) · · · · · · · · · · · · · · · · · · · · · (6)

Based on approximation of the time increment h through
the sampling time T , the discrete equivalent of the fractional
order α derivative is given by

Z{Dα[x(t)]} ≈
⎛⎜⎜⎜⎜⎜⎜⎝ 1
Tα

m∑
j=0

c jz
− j

⎞⎟⎟⎟⎟⎟⎟⎠ X(z) · · · · · · · · · · · · · · · · (7)

where m = [L/T ] and the coefficients c j are

c0 = 1,

c j = (−1) j

(
α

j

)
=

j − α − 1
j

· cαj−1 · · · · · · · · · · · · · · · · (8)

3.2 Tustin Taylor Expansion The direct discretiza-
tion can also be achieved by using the well-known Tustin op-
erator or trapezoidal rule as a generation function as follows:

Z{Dα[x(t)]} ≈
(

2
T

1 − z−1

1 + z−1

)α
X(z) · · · · · · · · · · · · · · · · · (9)

Taylor expansion of the fractional α order Tustin operator
gives

(
2
T

1 − z−1

1 + z−1

)α
=

1
Tα

∞∑
j=0

c jz
− j · · · · · · · · · · · · · · · · · · · · (10)

Here the coefficients c j are

c j =
2α

j!

[(
1 − x
1 + x

)α]( j)
∣∣∣∣∣∣∣
x=0

· · · · · · · · · · · · · · · · · · · · · · · (11)

Real implementation of Eq. (9) corresponds to m-term trun-
cated series given by

Z{Dα[x(t)]} ≈ Truncm

[(
2
T

1 − z−1

1 + z−1

)α]
X(z)

=

⎛⎜⎜⎜⎜⎜⎜⎝ 1
Tα

m∑
j=0

c jz
− j

⎞⎟⎟⎟⎟⎟⎟⎠ X(z) · · · · · · · · · · · · · · (12)

3.3 Lagrange Function Interpolation For example,
quadratic Lagrange interpolation among x(k−2), x(k−1) and
x(k) in the interval 0 ≤ t ≤ 2T results

x(t) =
x(k) − 2x(k − 1) + x(k − 2)

2

( t
T

)2

− x(k) − 4x(k − 1) + 3x(k − 2)
2

t
T

+ x(k − 2) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (13)

The α order derivative of tn is (3)

0Dαt (tn) =
n!tn−α

Γ(n − α + 1)
· · · · · · · · · · · · · · · · · · · · · · · · · (14)

For t = 2T , the α order derivative of x(t) is

Dαx(t)|t=2T =
1

Tα
· 1

2αΓ(3 − α)
[(2 + α) · x(k)

− 4α · x(k − 1) + α2 · x(k − 2)
]

· · · · · · · · · · · · · (15)

The z-transformation is

Z{Dαx(t)} = 1
Tα
· 1

2αΓ(3 − α)
[(2 + α) − 4αz−1

+ α2z−2]X(z) · · · · · · · · · · · · · · · · · · · · · · · · (16)

Therefore, the m-order Lagrange Function Interpolation
method can also be re-written in the form:

Z{Dα[x(t)]} ≈
⎛⎜⎜⎜⎜⎜⎜⎝ 1
Tα

m∑
j=0

c jz
− j

⎞⎟⎟⎟⎟⎟⎟⎠ X(z) · · · · · · · · · · · · · · · (17)
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4. Proposed Discretization Method

4.1 Sampling Time Scaling Property From the
Riemann-Liouville definition, fractional order integral with
order between 0 and 1 is

0Iαt f (t) =
∫ t

0
f (τ)dgt(τ), 0 < α < 1 · · · · · · · · · · · · · (18)

where

gt(τ) =
1

Γ(1 + α)
[tα − (t − τ)α] · · · · · · · · · · · · · · · · · · (19)

Let t := nT , where T is the sampling time and n is the step
currently under execution, then

gnT (kT ) =
nα − (n − k)α

Γ(1 + α)
Tα, k = 1, . . . , n · · · · · · · · (20)

Therefore, by sharing the same view of discrete integer order
integration rules, the “real” sampling time T of the kth step
is

Tn(k) = ∆gnT (kT )

= gnT (kT ) − gnT [(k − 1)T ]

=
(n − k + 1)α − (n − k)α

Γ(1 + α)
Tα · · · · · · · · · · · · · · (21)

Thus

Tn(n) =
1α − 0α

Γ(1 + α)
Tα

Tn(n − 1) =
2α − 1α

Γ(1 + α)
Tα

. . .

Tn(1) =
nα − (n − 1)α

Γ(1 + α)
Tα · · · · · · · · · · · · · · · · · · · (22)

Finally, based on the trapezoidal integration rule

0IαnT ≈
n∑

k=1

f (kT ) + f [(k − 1)T ]
2

Tn(k) · · · · · · · · · · · · (23)

and if T → 0, then

0IαnT =

n∑
k=1

f (kT ) + f [(k − 1)T ]
2

Tn(k) · · · · · · · · · · · · (24)

From Eq. (22), we can see that the interpretation of discrete
fractional order integrals is the “deformation” of their inte-
ger order counterparts by internal sampling time scaling (see
Fig. 1). By using this interpretation, it becomes transparent
to understand that the past values are “forgotten” gradually
in discrete fractional order integrals due to their scaled tiny
sampling time while in integer order ones all the values are
“remembered” with the same weights.

Similarly, discrete fractional order derivatives with order
between 0 and 1 is

0Dαt f (t) =
1

Γ(1 − α)
d
dt

∫ t

0

f (τ)
(t − τ)α dτ

=
d[

∫ t

0
f (τ)dg

′
t(τ)]

dt
, 0 < α < 1 · · · · · · · · · (25)

where

Fig. 1. Fractional order integral’s sampling time scaling.

Fig. 2. Changing of the “scaled integral area”.

g
′
t(τ) =

1
Γ(2 − α)

[t1−α − (t − τ)1−α] · · · · · · · · · · · · · · (26)

Thus

T
′
n(n) =

11−α − 01−α

Γ(2 − α)
T 1−α

T
′
n(n − 1) =

21−α − 11−α

Γ(2 − α)
T 1−α

. . .

T
′
n(1) =

n1−α − (n − 1)1−α

Γ(2 − α)
T 1−α · · · · · · · · · · · · · (27)

Again based on the trapezoidal integration rule
∫ nT

0
f (τ)dg

′
t(τ) ≈

n∑
k=1

f (kT ) + f [(k − 1)T ]
2

T
′
n(k)

· · · · · · · · · · · · · · · · · · · (28)

and if T → 0, then∫ nT

0
f (τ)dg

′
t(τ) =

n∑
k=1

f (kT ) + f [(k − 1)T ]
2

T
′
n(k)

· · · · · · · · · · · · · · · · · · · (29)

The interpretation of discrete fractional order derivatives
is the derivatives of fractional (1 − α) order integrals∫ nT

0
f (τ)dg

′
t(τ). Namely, it can be understood geometrically

as the changing ratio of the “scaled integral area” due to the
sampling time scaling property, as depicted in Fig. 2.

Clearly, when the orders are integers, the sampling time
scaling effect disappears which means in discrete domain
FOC is also a generalization and “interpolation” of the in-
teger order control theory.

4.2 Full Memory Length Baseline In order to eval-
uate the discretization methods in time-domain, a reliable
baseline case must be calculated in advance. For simula-
tion of FOC systems, using the truncated Grünwald-Letnikov
expansion (6), Mitteg-Leffler function (6), Bromwich’s integral
with a numerical integration and B-spline series expansion (14)

can be options. However those methods are either too ab-
stract or too complicated for engineering applications. In
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this paper, a reliable and easy simulation method is proposed
based on the sampling time scaling property, in which the
whole past values are memorized. The fractional order con-
trollers are discretized by the classical trapezoidal rule but
with scaled sampling time in the method.

Based on Eq. (23) and Eq. (28), it is easy to give the dis-
crete equivalent of the fractional α order integral or derivative
controllers as follows:

Z{Dα[x(t)]} ≈
⎛⎜⎜⎜⎜⎜⎜⎝ 1
Tα

∞∑
j=0

c jz
− j

⎞⎟⎟⎟⎟⎟⎟⎠ X(z) · · · · · · · · · · · · · · · (30)

For integral controllers (α < 0), coefficients c j are

c0 =
1

2Γ(1 + |α|)
c j =

( j + 1)|α| − ( j − 1)|α|

2Γ(1 + |α|) , j ≥ 1 · · · · · · · · · · · · · · · (31)

And the coefficients of derivative controllers (α > 0) are

c0 =
1

2Γ(2 − α)

c1 =
21−α − 1

2Γ(2 − α)

c j =
1

2Γ(2 − α)

[
( j + 1)1−α − j1−α

− ( j − 1)1−α − ( j − 2)1−α] , j ≥ 2 · · · · · · · · · (32)

Of course, the m-term truncated form of the proposed sim-
ulation method can also be used as a novel direct discretiza-
tion method for realizing fractional order controllers:

Z{Dα[x(t)]} ≈
⎛⎜⎜⎜⎜⎜⎜⎝ 1
Tα

m∑
j=0

c jz
− j

⎞⎟⎟⎟⎟⎟⎟⎠ X(z) · · · · · · · · · · · · · · · (33)

Similarly, the m can be considered to be the approximation’s
memory length as in the short memory principle method.

5. Comparative Studies

For comparison purposes, one mass position control is in-
troduced as a simple prototype for the case of Jm = 0.001
and Kd = 0.01 (see Fig. 3). Time responses with fractional
order derivative controllers Dα are simulated where Dα is
discretized by using the above direct discretization methods.
Sampling time T is taken as 0.001sec.

Those methods’ convergences must be analyzed before ap-
plying them to control implementation. The semi-log chart
of Fig. 4(a) shows the amplitude absolute values of the coef-
ficients |c j| versus term order j when approximating α = 0.4
derivative. Short Memory Principle (SMP) and Sampling
Time Scaling (STS) methods should have similar approxima-
tion performances, while the SMP’s coefficients converge a
little more rapidly than the STS’s. The poor convergences of
Tustin Taylor Expansion (TTE) and Lagrange Function Inter-
polation (LFI) methods seem problematic (see Fig. 4(a) and
Fig. 4(b)).

The baseline time responses with different α order deriva-
tive controllers are simulated by the proposed simulation
method using the sampling time scaling property. As de-
picted in Fig. 5, it can be seen clearly that the FOC systems’

Fig. 3. The position control loop with fractional α order
derivative controller.

(a) (b)

Fig. 4. |c j| versus j when approximating D0.4.

Fig. 5. Time responses with fractional order Dα

controller.

(a) (b)

Fig. 6. Time responses of TTE (a) and LFI (b) methods.

time responses are an interpolation of the classical integer or-
der ones and can be adjusted continuously by changing order
α.

5.1 TTE and LFI Methods The simulations of TTE
and LFI methods verify the convergence analysis. As de-
picted in Fig. 6(a) with approximation order m = 5, the TTE
method results poor performances. Actually the fractional or-
der controllers realized by high order TTE methods can make
control systems unstable, while higher the order better the ap-
proximation should be achieved. The time responses of LFI
method for D0.4 controller are also unsatisfied (see Fig. 6(b)).
In addition the programming complexity of calculating high
order Lagrange interpolation and Tustin operator’s high order
derivative makes the two methods inferior to control applica-
tions.

5.2 SMP and STS Methods In order to investigate
the effect of the memory length in SMP and TST methods, a
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Fig. 7. Performance index versus memory length.

Fig. 8. Time responses’ four quantities.

quadratic performance index J is defined in an error function
form:

J =
∫ t

0
[ fa(τ) − fb(τ)]2dτ · · · · · · · · · · · · · · · · · · · · · · · (34)

with t(= 1sec) simulation time, fa(t) time responses of the
two approximation cases, fb(t) the baseline time response.
The baseline case is calculated by full memory length STS
method. Fig. 7 shows performance index J versus memory
length n(≥ 5), in which the fractional order α is from 0.8 to
0.2 with 0.2 interval.

The four quantities of the step responses, maximum over-
shoot, delay time, rise time and settling time, are calculated
for both methods. For clearness, only α = 0.4 case is plotted
in Fig. 8.

As depicted in Fig. 7, clearly the approximation perfor-
mance is remarkably improved when increasing the mem-
ory length from 10 to 100. Between 100 and 1000 mem-
ory length, the performance improvement is just slight; while
hardware burden increases due to the necessity of storing and
processing more data in short time. The step response’s quan-
tities plotted in Fig. 8 also show the same observation result.
The SMP method has a slightly better approximation than the
STS method. The programming of SMP method is also much
easier in which c j can be calculated by simply multiplying
c j−1 and ( j−α−1)/ j together, as shown in Eq. (8). The SMP
method is practically superior. When sampling time T is
0.001sec, taking 100 memory length can have a good approx-
imation (see Fig. 9). With highly-developed computational

Fig. 9. Time responses with different memory length m
(α = 0.4).

Fig. 10. The position control loop with torque saturation.

Fig. 11. Robustness of approximated D0.4 controller
against saturation non-linearity (dash lines are the time
responses with integer 1 and 0 order Dα controllers).

power, processing 100 sampling data with simple SMP algo-
rithm should not be problematic in mili-second level for mod-
ern digital control systems. In real application, even mem-
orizing 10 past values can also give a good control perfor-
mance (15). The necessary memory length, namely how good
the approximation is needed, should be decided by the de-
mand of specific control problem.

For the one mass position control with Dα controllers, the
open-loop is 1

s2−α and its phase margin is (2 − α) × 90 de-
gree. A proper phase margin can be easily achieved by choos-
ing fractional order α (1). Letting α be 0.4 gives the control
system a good robustness against saturation non-linearity (16),
which is one of the most ordinary non-linear phenomena in
control systems. As depicted in Fig. 10, a maximum torque
limitation of ±2 Nm is introduced in the unity feedback con-
trol system. Comparison of Fig. 5 and Fig. 11 verifies that
the well-approximated fractional order D0.4 controllers are
remarkably robust against saturation non-linearity. It was
found that the fractional order controllers, like PIDα con-
troller, are robust against other non-linearities such as gear
backlash (15).
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6. Conclusions

In this paper, the sampling time scaling property is used as
a reliable and easy method to calculate the baseline case with
full memory length. This simulation method is based on the
classical trapezoidal rule but with scaled sampling time. It’s
truncated form is also proposed as a novel direct discretiza-
tion method. The existing direct discretization methods are
evaluated by their convergences and time-domain compari-
son with the established baseline case. Comparative stud-
ies show the poor performance of TTE and LFI methods.
SMP and STS methods have better and similar approxima-
tion; while the simple algorithm makes SMP method practi-
cally superior. With the baseline case calculated by the pro-
posed simulation method, the original plots of quadratic per-
formance index and the other four quantities give a clear way
to evaluate the effect of memory length. The simulation re-
sults show remembering 100 past value can achieve a good
approximation.

The FOC research is still at its primary stage. But its ap-
plications in modeling and robustness against non-linearities
reveal the promising aspects. Parallel to the development of
FOC theories, applying FOC to various control problems is
also crucially important and should be one of top priority is-
sues.

(Manuscript received Sep. 26, 2003,
revised Feb. 16, 2004)
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