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Dynamic Systems Control Lab 
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3. Hybrid Energy System 
 

4. MHz Wireless Charging 
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General Interests 
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Control of Motion 

Energy 

Wind power generator
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Various Plans 
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2001-2005 2006-2010 2011-2015 

10th 5-years 11th 5-years 12th 5-years 

Fuel Cell 

HEV 

BEV 

Fuel Cell 

HEV 

BEV 

Fuel Cell 

HEV 

BEV 

Fuel Cell 

HEV 

BEV/PHEV 

Fuel Cell 

HEV 

BEV/PHEV 

(2005) 

5-10% share in 2010 

50% share in 2030 

(2008) 

10% share in 

2012 

(2009) 

500K production 

5% share in 2011 

Focus 

Goals 
(2010-2011) 

1 Million EVs in 2015 

5 Million EVs in 2020 

Reality 

Demonstration 

Beijing Olympic 

595 EVs 

Shanghai EXPO 

1, 300 EVs 

 36/model 

170/company 

Similar  with the goals of DOE, USA 

2011 
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High End versus Low End 
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BYD JAC ZOTYE 

SAIC 

Roewe E50 
Price: 234,900RMB ($37,887) 

Subsidy: 106,900RMB ($17,242) 

Range: 180Km 
Max speed: 130Km/hr 
Battery: 18kWh SHIFENG 

Price: 31,800RMB ($5,129) 

Range: 180Km 
Max speed: 55Km/hr 
Battery: Lead-acid 

83,300 low-speed electric 
vehicles were sold in Shandong 
Province in 2012. 
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Significant Success of e-Bike Industry 
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 In 2011, over 26 million e-bikes were produced. 
 A unique highly modularized industry 

≈ $300 

Annual Output 
(million) 
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Battery Bottleneck 
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 Dynamic energy supply and consumption 

– Acceleration/Deceleration, Regenerative braking, etc. 

 Immature electricity mass storage technology 

− The energy density of petrol (12000Wh/kg) is hundreds 
of times as that of a mass market battery 
(20~200Wh/kg). 

− Multiple energy storage devices with various dynamics 
are naturally required: Ultracapacitors, Flywheels, 
Compressed air tank, etc. 
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 The electrification could extend beyond delivering 
electrical energy and converting it into chemical energy 
through batteries.  

 It can effectively extend  the mileage, lighten the weight, 
diversify energy sources and reduce our reliance on scarce 
resources such as lithium. 

Wireless Charging (1) 
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Wireless Charging (2) 
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Company Efficiency 
Air gap 

(mm) 

Weight of 

Receiving coil and 

core (kg) 

Size 

L*W*D (mm) 

Conductix-

Wampfler 
86% 50 70Kg 1025*875*61 

Showa Air Craft 92% 100 35Kg 847*847*33 

Example: 20KHz 30kW wireless charging systems:  

 Current systems usually operate in kHz range because 

the state-of-art power electronic devices are available 

for both power generation and conditioning.  
 

 This low frequency requires a large size coil and heavy 

ferrite materials, which is not favored by  

        vehicles in terms of payload efficiency. 
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 People use only a tiny portion of its 
potential for the most of time 

 The modern cars are designed to be 
all things to all the people, which 
leads to the inefficiencies. 

Energy-Inefficient Modern Cars 
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A cautious man carries 

 an umbrella every day… 

− seat five 

− more than l00mph 

− accelerate from 0-60 in about 10 seconds  

− easily break 40mpg 

− be able to work at more than 50C 

− warm passengers/ engines at -30C.  

− usually also have big trunks.  
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EV-A Consumer Electronics Product 
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 Consumer electronics products naturally tend to be 
personalized, portable and small. 

 Long-term problem of battery and aging population are the 
fundamental background. 

 There is a need and technological feasible to develop low-
speed small EVs. 
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Nature of Electrical System 
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 Electric/electronic devices are naturally easy to be 
modularized. 

 The realization of modular EV would improve the market 
competition and thus significantly reduce the cost. 

 The success of Chinese e-bike and low-cost EV industry 
has proved a unique strength of the modular electric 
vehicle and the new industrial structure.  
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 Especially motor, inverter and lead-acid battery 
are becoming both technological and 
commercially matured. 

 

Matured Low-Cost Components 
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48V 500W 
BLDC Controller 
(100RMB, $16) 

48V 500W 
BLDC Motor 
(100RMB, $56.5) 

Searched on Taobao online shopping site 

48-72V 350-2000W 
E-Drive Set 
(680-1,500RMB, $109.68-241.94) 

E-bike E-scooter E-motorcycle E-vehicle? 

48-84V 2,000W Motor 
(1,270RMB, $204.84) 

48-72V 4,500W Controller 
(1,500RMB, $241.94) 
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 Metton: liquid molding resin 

Our Practice 
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Advantages of e-Drive 
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 Fast and accurate torque control 

 Simple and accurate dynamic model 

 Fast and accurate current/torque feedback 

 Capable to generate driving/braking forces 

 Easy to implement distributed motor systems 



Dynamic Systems Control Laboratory, UM-SJTU Joint Institute 

EV Dynamics Control 
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 EV Motion Control: 

– Traction Control 

– Assistive Braking Control 

– Vehicle Stability Control 

– Eco-driving Assistance 
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Four WD EV Modeling 
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Battery-Ultracapacitor Test System 
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Dynamic Modeling 
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Comparative Study 
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Battery-Only System 

Peak_Current 5A 10A 15A 

Initial_Capacitor_Voltage 14.8V 14.8V 14.8V 

Initial_Battery_SOC 0.5(@7.4V) 0.5(@7.4V) 0.5(@7.4V) 

End_of_SOC 0.4532  0.4051  0.3559  

Energy_Efficiency[%] 91.05  89.12  87.84  

Battery Resistance 

Amplification Coefficient K 
1 2 3 

Initial_Capacitor_Voltage 14.8V 14.8V 14.8V 

Initial_Battery_SOC 0.5(@7.4V) 0.5(@7.4V) 0.5(@7.4V) 

End_of_SOC 0.4532  0.4523  0.4518  

Energy_Efficiency[%] 91.05  89.45  88.52  

Peak_Current 5A 10A 15A 

Initial_Battery_SOC 0.5(@14.8V) 0.5(@14.8V) 0.5(@14.8V) 

End_of_SOC 0.4514  0.3946  0.3224  

Energy_Efficiency[%] 89.13  82.67  74.01  

Battery Resistance  

Amplification Coefficient K 
1 2 3 

Initial_Battery_SOC 0.5(@14.8V) 0.5(@14.8V) 0.5(@14.8V) 

End_of_SOC 0.4514  0.4480  0.4432  

Energy_Efficiency[%] 89.13  83.31  76.41  

 The hybrid system works best with energy-
type batteries (large internal resistance). 
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ESR-based Efficiency Analysis 
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 Equivalent-Series-Resistance circuit Model: 
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Optimized Current Distribution 
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 It is theoretically guaranteed that ultracapacitors should 
provide the most of dynamic load current. 
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Experimental/Simulation Verification 
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 JC08 driving cycle is applied. 
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Ongoing Aging Test 
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 Test at higher temperature (45 deg.) to 
accelerate the aging of batteries. 

 Four scenarios (3 months): 

1. Battery-only without charging/discharge: 
calendar life 

2. Battery-only: establishment of  a baseline 

3. Ultracapacitor-battery hybrid (No.1): batteries 
only provide average load current. 

4. Ultracapacitor-battery hybrid (No.2): limited 
number of ultracapacitors, thus batteries have to 
supply certain part of dynamic load current.  
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Control of Networked Energy Systems 
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 Flexibility, Fault-tolerance, Scalability, Reliability 

 “Plug & Play” in a dynamic environment. 
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Utility-Function based Optimization 
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 battery cycle life versus. energy efficiency.   

Battery Bank Ultracapacitor Bank 

Karush–Kuhn–Tucker 
(KKT) conditions can be 
used to solve the 
problem. 
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Results using JC08 Cycle 
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 Similar results with average current control, 
which needs to know future power demand. 
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 Battery, supercapacitor hybrid energy 
system with an additional generator 

 Game theory based control strategy 

Future work (1) 

32 
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Future work (2) 
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Battery-Free EV 
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 With future ubiquitous wireless charging facilities, electric vehicles 
may only need to store a reasonable amount of electrical energy for a 
relatively short period of time.  
 

 Ultracapacitors are suitable for storing and releasing large amounts of 
electrical energy quickly.  

1) Work electrostatically without reversible chemical reactions involved 

2) Theoretically unlimited cycle life (can be cycled millions of time) 

3) Fast and high efficient charge/discharge due to small internal resistance (97-98% efficiency is 
typical) 

4) Precise voltage-based State Of Charge (SOC) measurement (energy stored in capacitors is 
proportional with the square of charge voltage) 

5) A typical operating temperature range of -40 to +70◦C and small leakage current 

6) Environmentally friendly without using heavy mental for its structure material. 
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Initial Results 
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 13.56MHz Wireless Power Transfer System 

– Cascaded Boost-buck converter for high efficiency 

– Multi-coil Simulation 

Ongoing Investigations 
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13.56MHz Charging of Supercapacitors 

38 

 Wireless  charging efficiency improvement by 
the real time control of the DC-DC converter. 
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MPPT Control for Wireless Charging 
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 Maximum power point tracking with variable                 
Lm and load impedance. 𝒁𝑳,𝒐𝒑𝒕 =

𝒘𝟐𝑳𝒎
𝟐

𝒁𝒊𝒏,𝒐𝒑𝒕
 

− Zin,opt is usually fixed (50 ohm). 
− ZL,opt is determined by Lm under resonance for ideal coils. 
− ZL,opt is achieved by well controlling Rin. 
− MPPT method: Minimizing Pr/Pf by controlling Rin to keep track 

with maximum power point. 
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Tracking of Optimum Duty Cycle 
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Varying load impedance 
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Optimum Load for Multiple 
 Receiver WPT System 
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Efficiency has one maximum value 
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 Innovations in technology, market mechanism 
and industrial structure are needed to 
breakthrough the traditional mindset that was 
optimized hundred of years for internal 
combustion engine cars. 

 Especially, the unique advantages brought by 
the vehicle electrification should be fully 
utilized. 

 EV dynamics, on-board hybrid energy system 
and wireless charging are the promising 
research and development areas. 

Conclusion 

43 
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Thank  You 
 

Presented by Chengbin Ma 

Email: chbma@sjtu.edu.cn 

Web: http://umji.sjtu.edu.cn/faculty/chengbin-ma/ 

44 

mailto:chbma@sjtu.edu.cn
http://umji.sjtu.edu.cn/faculty/chengbin-ma/
http://umji.sjtu.edu.cn/faculty/chengbin-ma/
http://umji.sjtu.edu.cn/faculty/chengbin-ma/

