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Abstract: Charging stations not only provide charging service to electric vehicles (EVs), but also integrate distributed energy
sources. This integration requires an appropriate planning to achieve the future sustainable distribution network. Real EV charging
demand is stochastic and affected by many uncertainties, which pose challenges to the planning of a charging station. This
paper presents a stochastic planning model of the EV charging station with PV, battery and transformer, mainly considering the
uncertainties from charging demand and PV power generation. Firstly, a comprehensive EV charging demand model is established
through reflecting the coupling among the EV stochastic charging behavior, charger specifications and EV charging assignment
model. Then, the planning model is formulated to minimize the total cost of the charging station, where the uncertainties arising
from EV charging are addressed in various constraints. Using this model, the optimal sizing of the charging station is determined,
together with the associated optimal operation strategy. Finally, the effectiveness of the proposed model is validated by multiple
case studies.

1 Introduction

Electric vehicles (EVs) are now being widely considered to be a
promising solution for energy saving and emission reduction in the
transportation sector, and they interact with the power grid via EV
charging stations [1, 2]. However, the potential mass penetration
of EVs places a heavy burden on current power system and may
require to expand the thermal plant capacity to accommodate the
growing charging demand. Renewable energy sources and energy
storage devices could be deployed in today’s power grid to reduce
the dependence on fossil fuel and promote sustainable charging sta-
tions. Appropriate planning of charging stations is important for the
widespread use of EVs and environmentally friendly power grid.

Recently, there have been many literatures on the planning and
operation of a charging station. These studies proposed different
planning models. For instance, Ref. [3] considered various types of
charging facilities in an urban area in its planning model to reduce
the social cost of the entire charging system. Ref. [4] established
a two-objective collective planning model to describe the coupling
of EV charging infrastructure and power distribution network. The
purpose was to not only minimize the charging station investment
cost and energy loss but also to maximize the captured traffic flow
by the charging station. Ref. [5] presented a state-of-charge (SOC)
characterisation based hierarchical planning to address the tradeoff
among the number of EV charging stations, charging demands, and
economic profit.

At the same time, the aforementioned work only took the power
grid as a single energy source in the charging station network,
without involving distributed renewable energy and energy storage
devices. It is worth noting that this straightforward energy network
configuration may not be sustainable considering a huge energy
demand from EVs in future. The introduction of renewable energy
and energy storage devices inevitably complicates the system con-
figuration and the charging station planning problem. In Ref. [6],
the planning of the charging station was investigated based on given
power dispatch strategy. The coupling between the current and sub-
sequent schedules and the coupling between energy management
and planning were not addressed, which may lead to sub-optimal
solutions. In Ref. [7], a bi-level planning for an islanded microgrid

with compress air energy storage was proposed to determine the
optimal capacities of each component based on an existing energy
demand curve. Ref. [8], with a fixed EV usage pattern and deter-
ministic solar irradiation, developed a Levelized Energy Storage
(LES)-sizing method in a PV-aided EV charging station to minimize
the system daily cost. Meanwhile, in real scenarios, the EV charging
profile is not deterministic. It is affected by many factors, start charg-
ing time, start charging SOC, EV battery capacity, etc [9–12]. Ref.
[9] took the initial charging SOC and the arrival time into account.
These two factors were represented by probabilistic functions in the
proposed model. And stochastic EV arrival and charging time were
considered in [10]. Ref. [11] modeled the stochastic EV charging
factors to obtain charging demand, and then optimized the size of
energy storage system. The number of charger and EV charging
assignment were not addressed. Ref. [12] discussed the charging
demand optimization, which involves the EV start charging time
and initial charging SOC. Ref. [13] also included the above two
stochastic variables in the EV charging demand profile, in which the
on-board battery capacities and renewable energy sources were not
reflected.

Although the aforementioned literatures introduced the stochastic
factors into their developed models, further improvements are still
needed and important. Major stochastic EV charging behavior fac-
tors have not been synergetically included in a unified framework,
which might not truly reflect the practical charging demands. The
number of EVs has been usually assumed to be fixed, but it con-
tradicts with the actual scenarios. In addition, the constraints of the
number of chargers and EV charging assignment have been seldom
discussed, especially with the other stochastic charging factors. The
limited number of available chargers is an important factor that sig-
nificantly impacts the serving capacity of a charging station and thus
the EV charging demands. Besides, it is practically expected that
sizes of energy storage, PV panels, and transformers should be opti-
mized together during the charging station planning, instead of being
separately discussed.

Based on the above review of the existing work, a comprehensive
stochastic planning model of the EV charging station is proposed
and developed. The main contributions of this paper are summarized
as follows:
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1.The planning of the charging station considers two major sources
of uncertainties in EV charging demands and intermittent PV power
generation. Especially, the start charging time, initial charging SOC,
battery capacity, and number of charging EVs are fully reflected
when establishing the charging demand model.

2.The impact of limited number of chargers and their rated charging
powers are investigated and demonstrated.

3.The capacities of PV panel, battery energy storage, and transformer
are optimized at the same time to achieve an economic solution.

4.With the following relaxation of constraints, the proposed plan-
ning problem of the EV charging station is formulated as a convex
programming problem and thus can be efficiently solved.

Based on the above discussions, this paper is organized as fol-
lows. Stochastic EV charging model and PV power generation model
are separately established in Section 2 and 3. Then, stochastic plan-
ning model is developed in Section 4, and multiple case studies are
provided in Section 5. Finally, conclusions are drawn in Section 6.

2 Stochastic modeling of EV charging demand

Fig. 1 shows the configuration of the PV and battery integrated
EV charging station. The PV, battery and transformer are the main
energy sources and charging station interacts with EVs through
chargers. In the system, there exist two aspects of uncertainties:
intermittent PV power generation and random EV charging demand,
which directly affect the size optimization of the charging station.
Therefore, it is necessary to model them firstly. As the charging ser-

Fig. 1: The configuration of EV charging station

vice provider, the EV charging station will serve a large amount of
EVs every day. Thus, corresponding EV charging demand certainly
has a great impact on the planing of the charging station. In addition,
the reality is the charging demand in each day are different, thus
the fixed constant charging demand profile is not suitable for the
planning of the charging station. In order to build a stochastic charg-
ing demand model, EV charging behavior related factors including
EVs start charging time, energy required for charging, initial charg-
ing SOC, daily number of EVs are all modeled in the following. As
explained above, the charging demand of charging station is actu-
ally the combined result of both EVs charging and specification of
chargers, therefore, the final stochastic EV charging demand model
is obtained by accommodating them.

2.1 Stochastic EV charging behavior

In this study, three stochastic variables are considered for modeling
the EV charging behavior: start charging time, start charging SOC
and daily served number of EVs. And following assumptions are
made:

1.EV drivers charge their EVs immediately when they arrive at the
charging station;

2.The SOC of the batteries of EVs are assumed to be charged to 0.8.

Such a charging end condition is acceptable because the main pur-
pose of the public charging station is to satisfy the EV charging in
short time while people much prefer full charging at home over
night. Since EV charging behavior is highly random, the useful
method of modeling uncertainty variable is using statistics and prob-
ability method [11]. Lognormal distribution is suitable for modeling
the distribution of the start charging SOC of the EV battery [9],
which is defined by the average (µsocini ) and standard deviation
(σsocini ) of the logarithm of the SOC variable. Here assume that the
start charging SOC of EV varies from 0.2 to 0.5. Fig. 2 shows the
simulated lognormal distribution of SOC.

f(SOCini) =
1

sociniσsocini
√

2π
e
−

(lnSOCini−µsocini )
2

2σ2socini , (1)

Another stochastic variable is the EV start charging time which
depends on when the drivers arrive at the charging station, and in
the study assume that the EV is charged immediately upon arrival.
In addition, the start charging time is associated with drivers’ travel
pattern. Ref. [11, 12] show a charging load profile that mainly con-
centrates in the period from 6 am to 22 pm, in which there are two
peaks at around 8 am and 6pm. Respect this characteristic, the EV
starting charging time is modeled by following, and the effect of
different travel pattern on the optimal sizing will be discussed in
Section 5.

f(tini) =



1
σtini

√
2π
e
−

(tini−µtini )
2

2σ2t , µtini = 8 am,

6 am ≤ tini ≤ 11 am

1
σtini

√
2π
e
−

(tini−µtini )
2

2σ2t , µtini = 6 pm,

2 pm ≤ tini ≤ 10 pm
(2)

where tini is the start charging time, µtini and σtini are the aver-
age arrival time and the standard variance, and the setting of such
parameters refers to [14].

The EV battery capacities on the market are various and depend
on vehicle type. According to Ref. [15] and market product sur-
veys, most EVs have battery capacities ranging from 30 kWh to
80 kWh. In this study, the arrival EV battery capacities are ran-
domly distributed according to the assumed Gaussian distribution
as follows:

f(c) =
1

σc
√

2π
e
− (c−µc)2

2σ2c . (3)

where c denotes the battery capacity, and µc and σc are average and
standard deviation of the EV battery capacity, respectively.

Moreover, the number of EVs that are charged daily at the charg-
ing station n is also not constant. In this study, it is determined by
a Gaussian distribution (µn and σn) shown as follows. The aver-
age number µn and σn are 80 and 10, respectively, which refers to
Ref. [10, 11].

f(n) =
1

σn
√

2π
e
− (n−µn)2

2σ2n . (4)

Based on above-mentioned probabilistic models, Fig. 2 shows an
example for the above mentioned random quantities for 90 EVs .

2.2 Charger specification and EV charging assignment
model

Different from stochastic EV charging behavior, the configuration
of the charger can affect charging demand in indirect way from two
aspects: the number of chargers and the equipped charging level. In
terms of the charging level, the higher charging level can shorten the
charging duration while increasing the charging load in the charging
station. According to the current EV charging standards SAE J1772
and IEC 62196, EV charging power level can be basically classified
into 3 types: 1) AC level 1 at peak power 3.7 kW, 2) AC level 2 at
3.7-22 kW, 3) AC level 3 at 22-43.5 kW, and DC level 3 at maximum
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Fig. 2: EV charging behavior random quantities simulation

200 kW. Generally, level 1 is used for EV onboard charger which
normally takes 7-9 h to fully charge the EV, while level 3 requires a
specific charger usually deployed in the public charging station [16].
Considering the main function of the charging station is to provide
rapid recharging service for coming EVs, here the chargers of level
3 are used in this study. Referring to [17], the charging process of
the battery can be simplified to constant power charging from SOC
at 0.3 to SOC at 0.8.

Since the number of chargers in the charging station is finite,
when a large amount of EVs come to the charging station for charg-
ing, if the number of upcoming EVs is greater than the number of
unoccupied chargers, this situation will certainly result in some EVs
fail to charge. Therefore, a mechanism needs to be devised to deter-
mine which EV is assigned to which charger and which EV will
be rejected. To solve the problem, a charging assignment model for
the arriving EV is established. In the assignment model, all arrival
EVs are sorted and tagged in order. In this control mechanism, each
time the arriving EV will access the available charger according to
the given charger sorting number until an unoccupied charger is
found. EVs may leave or queue if no empty charger. Fig. 3 shows
the charging assignment model.

...
EVs arriving

EVs queue

Charger 2

Charger n

Charger 1
EVs leave after 

charging finish

EVs may leave or queue 
if no empty charger

...

Fig. 3: EV charging assignment model

On the one hand, more number of chargers and higher charging
power rating can capture more arrival EVs and bring more bene-
fit. On the other hand, this could consequently increase the charging
load and raise the investment cost of charging station. Recognizing
that the number of chargers and charging level are closely coupled
with the charging demand, multiple candidate sets of different charg-
ing level (22 kW and 40 kW) and different number of chargers (5,
10, 15, 20 and 25) are summarized and listed in the charger options
Table 1. Obviously, for each candidate charger option, there would
be a corresponding stochastic charging demand profile which will be
obtained in the following section.

2.3 Final EV charging demand

Once the relevant random quantities: start charging SOC, start charg-
ing time, EV battery capacity, number of arriving EVs, and charging
station configuration: the number of chargers, charger power and the

Table 1 Candidate charger options

Number of chargers
Power 5 10 15 20 25

22 kW P22N5 P22N10 P22N15 P22N20 P22N25
40 kW P40N5 P40N10 P40N15 P40N20 P40N25

EV charging assignment model, are all completely determined, then
the total charging demand of the charging station Pl at each time
instant k can be estimated as following,

Pl(k) =
∑
nchg

Pchg(k), (5)

where nchg is the number of charger and Pchg,c represents the
charging power of the cth charger.

Charging load reflects the EV stochastic charging behavior. To
obtain the stochastic property of the EV charging demand load aris-
ing from the coupling of the multiple factors mentioned above,
Monte Carlo simulation (MCS) can be applied to repeat sampling
from the assumed probability distributions of these related random
quantities. Nm is the sample times in the MCS. Note that since the
stochastic nature of the charging behavior, the charging demand load
at same time t at different simulation time are consequently differ-
ent. In order to represent the stochastic property of the charging
demand, the generated charging demand load Pl(k) in Nm times
can be characterized by the Gaussian distribution:

Pl(k) ∼ N(P l(k), σ2Pl(k)), (6)

where P l(k) is the average value of charging load and σPl(k) is the
standard deviation at time k, which can be calculated as following:

P l(k) = 1
Nm

Nm∑
nm=1

Pnml (k)

σPl(k) = ( 1
Nm

Nm∑
nm=1

(Pnml (k)− P l,m(k))2)
1
2

(7)

For example, given 15 chargers and 22kW charging level, the
charging behavior related uncertainty quantities are randomly sam-
pled from their respective possibility distributions, as mentioned
above. Through one time MCS, Fig. 4 shows an example of charging
demand at the charging station with the time interval of 1 min. Then
the average charging demand within each hour can be calculated.
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Fig. 4: An example of charging demand with 1 min time interval for
charging station with P22N15.

After performing multiple times of MCS, the generated charg-
ing demand data is processed and the uncertain characterisation is
captured by the Gaussian distribution with (P l(k), σ2Pl(k)) accord-
ing to (7). Fig. 5 shows the values of the above two parameters for
each candidate charger option at each hour of one day, and the val-
ues change over time. As shown in the figure, with a less number
of chargers, the charging demand is lower. With more chargers, the
charging demand increases because more EVs can be captured by the
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charging station. As the number and rated charging powers of charg-
ers grow, the charging demand does not proportionally increase, but
the associated investment cost of chargers does. Besides, a larger
charging demand means higher revenue from serving EVs. But it
requires a higher power supply capacity. Therefore, a tradeoff exists
when determining an optimal charger option in Table 1.
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Fig. 5: Charging demand characterization at each hour under each
candidate charger option. (a) P l(k). (b) σPl(k).

3 Stochastic modeling of PV generation power

The PV output power Ppv can be evaluated by the following
equation [18]:

Ppv = GiApvηpv
(

1− cT ∗ (Tenv − TSTC)
)
, (8)

where Gi is the global solar irradiance, Apv is the installed PV
panels surface, η is the conversion efficiency of the PV panels,
cT denotes the temperature coefficient of the PV panels, Tenv and
TSTC are the environmental temperature and standard test condition
(STC) temperature, respectively. The technical parameters of a PV
panel used in this study are listed in Table 2.

Table 2 PV panel parameters

Parameter value Parameter value

Length 1650 mm Width 990 mm
Conversion efficiency 15.3% Maximum Power 250 W
Temperature coefficient 0.0045

Based on the above mentioned PV panel parameters and annual
data of solar irradiance and temperature [19], the output power of
the PV panel can be estimated and shown in Fig. 6. Overall it can
be seen that the PV output power is intermittent and varies with the
time of day and a specific season. As shown in Fig. 7, four typical
power profiles are used here to represent the uncertain PV power
output in the four seasons (spring: Mar.–May, summer: Jun.–Aug.,
Autumn: Sep.–Nov., Winter: Dec., Jan.–Feb.) of a year [19]. In the
following sections, the set of the typical PV power profiles is repre-
sented by symbol Y , and each profile is indexed by y ∈ Y (|Y|=4,
y = 1, ..., 4).

Fig. 6: Annualized PV power generation for the specific PV panel
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Fig. 7: Typical daily PV power generation of four seasons for the
specific PV panel.

4 Stochastic planning model of charging station

From the perspective of the charging station owner, the planning
of the charging station aims to minimize the economic cost, which
requires calculation of the investment costs of the charging station,
operation cost, and subtracting the revenue from the serving charg-
ing of EVs. The investment costs include the total cost of PV, battery,
transformer, and chargers, which are measured according to their
sizing. Among them, chargers and transformers are rarely discussed
in literatures. Operation cost primarily includes electricity purchas-
ing cost from the main grid, which is related to the operation of the
charging station. Therefore, the objective function of the planning
of the charging station is to minimize the daily cost of the charging
station formulated as follows:

min
∑
y∈Y

(
css+ cbb+ ctsts+ cchgnchgPchg

+
N∑
k=0

cg(k)P+
g (k) +

N∑
k=0

cg,fb(k)P−g (k)

−
N∑
k=0

cev(k)Pl(k)
)
,

(9)

where cs, cb, cts and cchg represent the unit cost of PV pan-
els in USD/(kW·day), the unit cost of battery in USD/(kWh·day),
the unit cost of transformer in USD/(kW·day), the charger cost in
USD/(kW·day), respectively. cg(k) represents the electricity price
purchasing from the grid, and cg,fb(k) represents the electricity
price that charging station sells to the grid. Index k is the time slot
index for the time of day from 0 to N = 23, namely one day is
divided into 24 time slots. cev represents the charging price for EV.
In addition, the electric power exchange with power grid is Pg which
is composed of P+

g (charging station buys electricity from the grid)
and P−g (charging station sells electricity to the grid). Variables s,
b, ts are PV size, battery size and transformer size, respectively. Pl
is the charging demand load of EVs, Pchg is the equipped charg-
ing power of the charger, and nchg is the number of chargers to be
installed in the charging station.

In the charging station, power balance should be always guaran-
teed at any time expressed by:

Ppv(k) + Pbat(k) + Pg(k) = Pl(k), (10)
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where Ppv(k), Pbat(k) and Pg(k) are the generation power of PV,
the discharging or charging power of battery, and the grid power,
respectively.

The battery energy dynamics can be determined by the following
model:

Ebat(k + 1) = Ebat(k)− (Pbat(k) + η|Pbat(k)|)∆t, (11)

whereEbat(k) is the battery energy level, the battery power Pbat(k)
value can be either negative (i.e. charging) or positive (i.e. discharg-
ing), and η is the lost efficiency of battery, which is very small since
lithium-ion battery is characterised by high efficiency. Furthermore,
a terminal constraint is added

Ebat,0 = Ebat,N+1, (12)

which ensures that the energy level of battery at the end of the day
is equal to the beginning energy level. Such a terminal constraint in
essence guarantees that the operation during this day does not influ-
ence the operation of subsequent day. In addition, the battery power
Pbat(k) and stored energy Ebat(k) are limited by the following
inequality constraints

Ebat,min ≤ Ebat(k) ≤ Ebat,max, (13)

Pbat,min ≤ Pbat(k) ≤ Pbat,max, (14)
whereEbat,min andEbat,max are the minimum and maximum lim-
its of the stored energy. They are 10% and 90% of the full battery
energy capacity (i.e., the optimized battery size b), respectively,

Ebat,min = 0.1b, Ebat,max = 0.9b. (15)

Pbat,min and Pbat,max are the permitted charging and discharging
power limits, which again relate to the battery size b,

Pbat,min = −rb, Pbat,max = rb, (16)

where coefficient r represents the maximum allowable C-rate. It
depends on battery specifications and needs of a specific applica-
tion, i.e., a user-defined parameter. Since the batteries deployed at the
charging stations are mainly energy type batteries, a smaller C-rate
is generally preferred, such as ±0.5C in this paper.

The grid power cannot exceed the permitted power limits Pg,min
and Pg,max ( i.e., the optimized transformer size ts) of the trans-
former:

−ts ≤ Pg(k) ≤ ts, (17)
In addition, the design variables: PV size s, battery size b and

transformer size ts are subject to following bounds:

smin ≤ s ≤ smax, (18)

bmin ≤ b ≤ bmax, (19)

tsmin ≤ ts ≤ tsmax, (20)

However, it should be noted that in (10), the charging demand load
Pl and the PV power generation Ppv are random variables. There-
fore, the optimization problem becomes to optimize the component
sizes while scheduling the system operation power flow under uncer-
tainties. The random PV power generation is represented by the four
seasonal typical profiles. Once the charging demand is determined
by (6), then the right inequality of constraint (17), namely the upper
bound, can be converted into the follow chance constraint:

Pr
(
Pl(k) ≤ Pbat(k) + ts+ Ppv(k)

)
≥ α, (21)

whereα is a constant parameter meaning confidence level or reliabil-
ity. The higher the α value, the higher the reliability that the system

can guarantee. Then the normal cumulative distribution function can
be obtained by converting the chance constraint shown as follows:

Φ(
−Pl(k) + Ppv(k) + Pbat(k) + ts

σPl(k)
) ≥ α. (22)

Then the upper bound constraint can be rewritten as:

σPl(k) ≤ 1

Φ−1(α)

(
Ppv(k) + Pbat(k)− P l(k) + ts

)
. (23)

And the lower bound constraint is rearranged as:

σPl(k) ≤ 1

Φ−1(α)

(
− Ppv(k)− Pbat(k) + P l(k) + ts

)
.

(24)
By far, all of the constraints have been convex except for the non-

affine equality constraint (11), which is also nonlinear due to the
existence of the absolute function. In order to solve the problem
efficiently, (11) is relaxed to become convex without qualitatively
altering the original problem as follows [20],

Ebat(k + 1) ≤ Ebat(k)− (Pbat(k) + η|Pbat(k)|)∆t. (25)

The advantage of convex problem is that it can guarantee the solu-
tion of the problem is existing and unique. By far, the original
sizing optimization problem has been transformed into a nonlinear
convex programming problem. Then convex optimization solving
software can be used to efficiently solve the problem, comparing
other heuristic methods used in [13, 21].

5 Case studies and analysis

This section presents the optimal sizing results solved by the pro-
posed model and analyzes the impact of different parameters on the
results. Since the charging demand profile relies on a specific number
of chargers and charger rated power, each of the candidate charger
options listed in Table 1 is applied and compared to finally deter-
mine an optimal charger option with the lowest total cost. Section 2
explains the uncertainties of the charging demand profile for each
candidate charger option [see Fig. 5]. The uncertainties of PV power
generation also have been addressed in section 3 which are shown in
Fig. 7. Those uncertainties results are then utilized in the following
case studies. Based on the results of charging demand and PV power
generation, the optimal size of each component can be solved using
the proposed stochastic planning model. Technical parameters used
in the simulation calculation are summarized in the Table. 3. The

Table 3 Parameters in simulation [11, 20, 22–24]

Parameter Value Parameter Value

PV cost 2025 USD/kW Battery cost 900 USD/kWh

Transformer cost 788 USD/kW Charger cost 500 USD/kW

Battery size 0-1000 kWh PV size 0-500 kW

Transformer size 0-500 kW PV 20 Yearsbounds design life

Battery 10 Years Transformer 20 Yearsdesign life design life

Charger 10 Years α 0.9design life

PG&E dynamic electricity tariff cg(k) is used in the study, including
peak periods, shoulder and off-peak periods [20]. For the charging
station, the operation power flow can be divided into three directions:
the charging station sells electricity to the EVs at price cev(k), the
charging station buys electricity from the grid at price cg(k), and the
charging station sells electricity to the grid at price cg,fb(k). The
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relationship between the three prices are set as follows: the cev(k) is
generally greater than cg(k), and cg(k) is much larger than cg,fb(k).
Such setting cg,fb is lower can promote the charging station to use
the local energy resources to charge EVs instead of selling it to the
grid. Fig. 8 shows the specific information of the three prices.
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Fig. 8: Hourly prices of electricity for the charging station

The optimal cost results for each candidate charger option listed
in Table 1 are shown in Fig. 9. It clearly shows that the charger option
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Fig. 9: Optimal cost comparison in the charging station for
different charger options.

(number of chargers and charger power level) has a large impact on
the economic cost. For the charger power with 40 kW, the most eco-
nomical number of installing chargers is 10. For the charger power
with 22 kW, the most economical number of chargers is 15. And
more or less than that optimal number could result in larger cost.
The optimal sizes of each energy device in each candidate option
are summarized in Table. 4. As shown, as the number of charg-
ers increases, the optimal size of each device has almost the same
trend: firstly it rapidly increases, and then gradually slows down or
remains constant, which means that this increase is nonlinear. Com-
paring the resulted total cost for the two charging configuration, the
most economical configuration for the charging station is: 15 charg-
ers with charging power 22 kW, PV size 394.75 kW, battery 907
kWh, and transformer 125 kW. This optimal case is named as Case
1 which will be compared with other cases in the following case
study discussion. The optimal results indicate:

Table 4 Optimal size of each component in different charger options

Charger options
Device P22N5 P22N10 P22N15 P22N20 P22N25

PV(kW) 215.5 343.75 394.75 447 461.5
Battery(kWh) 489 813 907 890 883
Transformer(kW) 90 121 125 125 125

Device P40N5 P40N10 P40N15 P40N20 P40N25

PV(kW) 301 409 453 452.25 452.25
Battery(kWh) 724 922 909 910 910
Transformer(kW) 106 129 128 128 128

1.The appropriate size selection of energy component can achieve
remarkable cost saving for the planning of EV charging station;

2.The number of chargers and the charging level have a great impact
on the objective function. More or less than the number of chargers
will increase the system cost dramatically and the charging level
can also affect the outcome, which is not explicitly discussed in
other studies.

For Case 1, the optimal charging station operation power flow is
obtained associated with the optimal sizing as shown in Fig. 10.

Due to the four different typical PV power profiles, the charging
station presents different operation strategies. For typical profiles of
spring, summer and autumn, the PV power is relatively sufficient .
The battery is charged between 0 am to 6 am by the main grid. How-
ever, it is worth noting that the battery is not fully charged (e.g. the
SOC is approximate 0.42 at 7 am in Fig. 10(a)). This is because that
the battery need keep a low SOC level in order to prepare for storing
the excess PV power at noon. At that time, the battery is charged
to its maximum energy level, and thus is ready to meet the most of
charging demand in the evening. During the whole day, the working
period of transformer is quite short. It concentrates at the off-peak
time, which helps save the operation cost. In contrast, for the win-
ter profile in Fig. 10(d) which has the least PV power, the battery is
charged to the full SOC level before 7 am. And much more electric-
ity has to be purchased under this profile, comparing with the results
under the other three profiles. Ultimately, at the end of each day, the
energy management strategy respects the formulated constraint to
guarantee the battery SOC to be as same as its beginning SOC level
of a day.

5.1 Comparison with deterministic model

In the charging station planning model, there are two sources of
uncertainties being considered, the charging load and PV power gen-
eration. We define the Case 2 as a deterministic model. In this model,
only the hourly average profile is used, and the deviations from the
average are not reflected. Thus it is relatively ideal because uncer-
tainties are inevitable in real scenarios. Since the charging load and
PV power generation are also fixed, the chance constraints, (23) and
(24), in the original problem are eliminated. In Case 2, the four typ-
ical PV power profiles are averaged at each time point to produce a
24-hour profile. Applying the same charger option, i.e., P22N15 in
Case 1, the calculated sizes of the components in Case 2 are listed
in Table 5. Comparing the results of Case 1 and Case 2 particularly
show that the battery size is increased in Case 2, while the sizes of
PV and transformer are decreased in the same case. This indicates
that the uncertainties certainly impact the results of the charging sta-
tion planning. Although the total cost of the ideal Case 2 is lower,
the stochastic model is still beneficial because it is closer to practical
situations.

5.2 Impact of renewable energy source

Ref. [11, 25] studied the economic benefits of deploying energy
storage systems in charging station, but their studied systems lack
renewable energy resources. In this study, to show the benefits
from integrating renewable energy resource, the solved optimization
results of the charging station without installing PV are shown as
Case 3. According to the optimal design results, lacking of PV gener-
ation power, less amount of battery capacity is used but larger size of
transformer is preferred. Compared with Case 1, this case purchases
bulk of electricity from the grid which results in higher operation
cost. Thus, if PV could be installed, then PV and battery can provide
power together during the EV charging period, and larger battery
size can be used to store PV power and then be released at next
charging period, which could finally reduce the total cost. Therefore,
from the perspective of the whole system daily cost, it proves the
excellent economy of introducing renewable energy into the design
of the charging station.
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Fig. 10: Power flow of the charging station with P22N15. (a) Typical spring PV power profile. (b) Typical summer PV power profile. (c)
Typical autumn PV power profile. (d) Typical winter PV power profile.

Table 5 Results of optimal sizing in different cases

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10
Base Determined Without Lower Fixed New 20% 20% 20% 20%
case PV&load PV electricity electricity charging increase of increase of increase of increase of

price price pattern PV cost battery cost transformer charger cost
cost

PV(kW) 394.75 346 0 1.75 389.75 500 382.5 396.25 394.75 394.75
Battery(kWh) 907 986 534 0 504 368 913 834 907 907

Transformer(kW) 125 81 155 320 144 118 125 125 125 125
PV cost (USD) 438.01 383.92 0 1.94 432.46 554.79 509.3 439.67 438.01 438.01

Battery cost (USD) 894.58 972.49 526.68 0 497.1 362.96 900.49 987.09 894.58 894.58
Transformer 53.97 34.97 66.93 138.17 62.18 50.95 53.97 53.97 64.77 53.97cost (USD)

Charger cost (USD) 180.82 180.82 180.82 180.82 180.82 180.82 180.82 180.82 180.82 216.99
Operation cost (USD) -2319.23 -2406.78 -726.16 -72.37 -1311.77 -2435.47 -2310.57 -2242.97 -2319.23 -2319.23

Energy selling 0 0 0 -3.87 -30.79 0 0 0 0 0to Grid (kWh)
Total cost (USD) -751.85 -834.57 48.28 248.56 -139.21 -1285.95 -665.98 -581.41 -741.06 -715.69

5.3 Comparison with different type of electricity tariff

Since different cities have different electricity tariffs, in order to
study the impact of the electricity tariff type on the design of charg-
ing station, another two electricity tariffs used in [20] are introduced,
as shown in Fig. 11. From the figure, it can be seen that the Austin
tariff is lower than PG&E, and the other is a customized fixed elec-
tricity tariff. The optimal components sizes and daily costs of the
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Fig. 11: Three types of electricity tariff

two selected electricity tariffs are defined as Case 4 and 5 shown in
Table 5.

Case 4: Among the three different tariffs, it has the maximum
transformer capacity, whose capacity is more two times larger than
that of Case 1, and the highest operation cost, while the capacity of
PV and battery are very less. It can be inferred that since the electric-
ity price of Case 4 is relatively cheap, it is the most economic way
to take the grid as the primary energy source. Therefore, the local
electricity tariff factor should be seriously considered in the design
of charging station

Case 5: The results show the daily cost resulting from fixed price
type is in the middle between Case 1 and 4. The PV and battery
are beneficial for the charging station resulting in that more PV and
battery capacity are needed while transformer capacity is reduced
correspondingly.

5.4 Impact of charging demand pattern

Since the optimization results of the charging station are based on
the charging demand model, a completely different charging behav-
ior pattern will result in completely different results. The previously
generated charging demand based on the charging station has two
charging peaks in one day: the peak appears in the morning and in
the afternoon. Here one stochastic factor, the start charging time, is

IET Gener. Transm. Distrib., 1–8
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changed in this case and other factors remains unchanged, which
could generate a new different charging pattern. It is assumed that
the charging demand is mainly concentrated between 6 am to 10
pm, and the single charging peak appears around 1pm, which can be
described through following probability expression

f(tini) =
1

σtini
√

2π
e
−

(tini−µtini )
2

2σ2tini . (26)

This case is defined as Case 6 in which other conditions and parame-
ters are unchanged. The obtained results are listed in Table 5. In this
case more PV are utilized while the size of battery and transformer
are decreasing, as well as the least total cost. Such results stem from
the shape of charging demand is in line with the PV power profile.

5.5 Sensitivity of components cost

The cost of components is another key factor affecting optimiza-
tion results. Before conducting the sensitivity analysis of component
costs, the unit costs value used in Case 1 are firstly considered as the
base values. Then, the unit cost of one single component is increased
to 120% of its base cost, while the cost of other components remains
at the base value. Case 7, 8, 9 and 10 show the results on changing the
unit costs of PV, battery, transformer and charger. It can be found that
once the costs of PV and battery are increasing their corresponding
design sizes are decreased. Comparing the total cost results, it can be
found the most sensitive variable is the battery cost, which causes the
maximum incremental cost, while the total cost is the least sensitive
to the cost of transformer.

6 Conclusion

This paper studied the planing of charging station mainly con-
sidering the system uncertainties from the stochastic EV charging
demand and PV power generation. Particularly, the charging demand
establishment considered many EV charging behavior, charger con-
figuration, and charging assignment model, which made the modeled
charging demand of charging station more realistic. A stochas-
tic planning model for EV charging station was then proposed to
optimize the component sizes by minimizing the capital cost and
simultaneously optimize the operation power flow, which tackled
the uncertainties into the technical constraints and objective func-
tion. The effectiveness of the proposed model was validated by the
case study. The optimal charger option, i.e., the number of charg-
ers and charging level, and the size of PV, battery and transformer
were found. A set of case studies for comparison were conducted
to examine the major sensitive parameters affecting the charging
station planning.
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