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Summary

This paper proposes the gated recurrent unit (GRU)-recurrent neural network

(RNN), a deep learning approach to predict the remaining useful life (RUL) of

lithium-ion batteries (LIBs), accurately. The GRU-RNN structure can self-learn

the network parameters utilizing adaptive gradient descent algorithms, leading

to a reduced computational cost. Unlike the long short-term memory (LSTM)

model, GRU-RNN allows time-series dependencies to be tracked between

degraded capacities without using any memory cell. This enables the method

to predict non-linear capacity degradations and build an explicitly capacity-

oriented RUL predictor. Additionally, feature selection based on the random

forest technique was used to enhance the prediction precision. The analyses

were conducted based on four separate cycling life testing datasets of a

lithium-ion battery. The experimental results indicate that the average percent-

age of root mean square error for the proposed method is about 2% which

respectively is 1.34 times and 8.32 times superior to the LSTM and support vec-

tor machine methods. The outcome of this work can be used for managing the

Li-ion battery's improvement and optimization.
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1 | INTRODUCTION

Due to the low self-discharge rate of lithium-ion batteries
(LiBs), high energy density, and high working voltage,
they become a primary choice of the onboard energy stor-
age system in electric vehicles (EVs).1,2 Although, in con-
sumer electronics, mobile devices, and EVs, numerous
field failures of LiBs are documented. Battery safety has
become a critical problem that needs to be intensively
investigated. For complicated operational environments
in EVs, maintaining battery packs' stability and protec-
tion pose a significant technical challenge. Overheat,
overcharge, and short circuits are the principal potential
failures in the battery packs in EVs.3 This happens due to

several operating conditions, chemical reactions, and
mechanical stress.

Prognostics and health management (PHM) of battery
technologies has recently attracted a lot of research inter-
est. The enabling discipline of PHM includes methods as
well as technologies for assessing the systems' reliability
under real-cycle conditions, for the diagnosis of initiated
failures and likely failure prognosis.4 The lithium-ion bat-
tery PHM helps users to make tentative maintenance
choices to prevent unexpected failure. As one of the most
important states to be tracked in a battery and one of the
key approaches for PHM, remaining useful life (RUL) is
defined as the remaining number of charge-discharge
cycles of the battery before the capacity deteriorates to a
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predetermined failure threshold.5 Hence, the battery's
RUL monitors the future operating status of the battery
to manage the charge-discharge of the battery, prolong
the battery life, prevent security risks, and decrease the
use costs.6

1.1 | Literature review

Battery degradation process models are often constructed
through traditional prediction of battery RUL approaches
based on empirical models or linear model assumptions
known as model-driven techniques, which are intended to
develop mathematical or physical models for explaining
battery degradation mechanism and modify model param-
eters by employing actual data calculated. For instance,
Chen et al proposed a combination of the particle filter
(PF) and sliding-window grey model to build a new struc-
ture for battery RUL prediction. The proposed method was
able to continuously and effectively update model parame-
ters to reflect the changing trend of capacity.7 In another
work, Chang et al presented a hybrid model in which the
unscented Kalman filter method was adopted to achieve a
prognostic result based on an estimated model and gener-
ate a raw error series.8 However, with a complex nonlinear
system, an exact mathematical or physical model is impos-
sible to be constructed. In this context, the effectiveness of
data-driven models has been attracted high interest. These
models typically make decisions regarding online cloud or
edge terminal data based on considerable historical
data.9,10 Such models generally create particular machine
learning-based models with more excellent capability for
complex nonlinear interactions.

Thus, data-driven methods usually provide more sta-
tistical capabilities for data distributions.11 This method
builds upon artificial neural networks (ANNs) and can be
supervised, semi-supervised, or unsupervised. It uses
non-linear functions to establish a relationship between
the input and target parameters and uses specific
methods to calculate the function parameters. However,
the noise and uncleanness of the data dramatically
impact solving problems with deep learning methods.
Nevertheless, clean data cannot be obtained without
noise for data-driven procedures, and it is challenging to
identify robust features among the wide range of features
such as time domain, time-frequency domain, and fre-
quency domain. Consequently, new feature selection
methods such as random forest (RF), normalization
cross-correlation indicator method, isometric mapping
method, and other techniques are suggested to model the
degradation process to achieve a more discriminative fea-
ture space. In this regard, a comprehensive paper12 has
been published, which proposed a framework based on

RF classification for lithium-ion battery feature analysis.
The results illustrated that the RF technique attains the
reliable classification of battery physical properties and
leads to the impressive quantification of both correlations
and feature importance.

Recent advancements in deep learning techniques
have considerably increased the capacity of complex data
analysis.13,14 Besides, deep learning technology has been
designed to overcome the requirement for prediction
problems since it is particularly advantageous for
extremely complicated nonlinear fittings of ANNs. New
challenges for complex prediction problems, including
accurate prediction of RUL battery, are expanded by the
deep learning platform. Numerous innovative deep learn-
ing methods have provided plenty of advantages for bat-
tery health monitoring in recent years.15,16

Numerous research activities concentrated on models
based on the deep neural network (DNN), such as the
ensemble learning, deep belief network, and extreme
learning machine. These frameworks are often concen-
trated on fault measurement areas with less time series
knowledge requirements.17 On the other hand, the con-
volution neural network and recurrent neural network
(RNN) were proposed to the RUL field in recent years.
For example, Li et al built a novel framework using com-
pact convolutional neural network models through the
concepts of transfer learning to improve the battery
health estimation accuracy.18 Another disadvantage of
these methods is that the chosen prediction model pos-
sesses more input parameters and need to have time con-
secutive.19 It is noteworthy that the typical RNN
algorithm suffers from connecting the current input to
the relevant information long before the current state.
However, there is still a problem of poor prediction abil-
ity using the data-driven approaches for battery health
prediction owing to the nonlinear structure of the LiBs.

Compared with other data-driven methods, the
Gaussian process regression (GPR) method is a class of
Bayesian model that has strong nonlinear modeling capa-
bility to solve and predict the regression problems.20-22

Moreover, the GPR method can also improve prediction
accuracy without the physical model. However, the trend
fitting deteriorates when test data are far from the train-
ing data, and the predictive results are unsatisfactory. In
this regard, some attractive papers have been published
for calendar aging prediction of Li-ion batteries using the
modified GPR method. For instance, a mechanism-
conscious GPR model has been constructed for battery
cycle life prediction. In this way, by coupling the polyno-
mial equation and Arrhenius law into a compositional
kernel through the GPR model, a modified model of the
GPR was made, which could have an acceptable predic-
tion against uncertainties.23 In other interesting work, an
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advanced Gaussian filter technique has been performed
to obtain the smoothing incremental capacity curves.
Then the health indexes (HIs) have been extracted from
the partial incremental capacity curves as the input fea-
tures of the GPR model. The results were demonstrated
that the proposed model has advantages of high accuracy
and robustness.24

On the other hand, long short-term memory (LSTM)-
RNN is another class of RNN that could solve some draw-
backs of simple RNN, such as vanishing and exploding
gradient.25 Li et al implemented an architecture using
LSTM-based time series processing, which allows the
input charging curves to be variable in time steps and
prediction to be attained even with incomplete sensor
data.25 Although, LSTM's configuration is complex and is
composed of three gates, including the output gate, input
gate, and forget gate.

However LSTM-based RNN models have attained
state-of-the-art accomplishment on various machine
learning tasks, the gating mechanism leads to significant
complexity. As an alternative, the gated recurrent unit
(GRU) architecture is similar to the LSTM architecture
but has one fewer gate. Compared with an LSTM-based
model, a GRU-based model due to the merging of the cell
state and the hidden state has a more straightforward
structure and fewer tensor operations (about 25% fewer),
thus making model training easier and making it a very
appropriate candidate for embedded implementations. So
far, a few works have been done using GRU methodology
in battery RUL prediction, but there are still weak-
nesses.26,27 For instance, Song et al26 proposed this
method to predict battery degradation. However,
this study has not been considered the battery features
and just applied capacity observation as input and has
not been used multivariate time series prediction. In
other work, Ungurean et al27 proposed online state of
health (SOH) estimation for LiBs using GRU. In the first
step, they estimated the state of charge (SOC) and then
used battery capacity to predict SOH. However, estima-
tion of SOC and then using it to predict SOH is complex
and will result in many errors. This method will be
involved in two predictions that if the SOC estimation
error is high, the SOH estimation error will be more. It is
worth noting that they used univariate GRU for predic-
tion. In this paper, a data-driven precise battery RUL pre-
diction model is developed using an effective training
network to cope with these limitations.

1.2 | Motivations and contributions

A GRU is a modern deep learning network to overcome
the abovementioned problems. For verifying the

effects, the comparison of a number of state-of-the-art
models with the suggested GRU in the present study is
performed. Dissimilar to the above RNN-based
approaches, and the GRU-RNN-based RUL approach is
proposed to create nonlinear mapping among the bat-
tery capacity and observable variables. In particular,
the GRU-RNN is an enhanced type of simple RNN to
resolve a short-term dependence problem. Compared
to the equivalent circuit models and electrochemical
models that encompass differential equations, the
GRU-RNN does not need to extract the battery's inter-
nal parameters and many other tasks to parametriza-
tion. The key contributions of the present work were
summarized as follows:

1. Since time series data are time-dependent, there is a
need to consider time delays (lag) to predict such cases
that have not been addressed in most papers in battery
degradation prediction. Toward this end, a deep learn-
ing method is introduced for multivariate time-series
prediction.

2. A GRU model is proposed with multivariate input to
predict the battery RUL. Unlike the LSTM, this
method has fewer parameters due to merging the cell
state and the hidden state and does not need a mem-
ory unit. Therefore, it makes a more straightforward
structure and fast training.

3. Feature extraction through the statistical equations
and feature selection is done based on RF. At this
stage, not only the computational burden of modeling
is reduced, but also the performance of the model is
improved.

4. An adaptive learning rate optimization algorithm,
namely Adam Optimization, is applied for the GRU-
RNN model to optimize the training network. This
technique cannot only complete the model training
rapidly and stably but also reduce the effect of learn-
ing rate and the training time. Besides, an early stop
technique is used to prevent overfitting.

5. The investigations on a reliable battery dataset from
NASA demonstrate that GRU-RNN can obtain greater
precision than the LSTM and traditional methods.

1.3 | Organization of the paper

The rest of the article is structured as the following: Sec-
tion 2 outlines the history of the proposed method as well
as its architecture, Section 3 discusses the new approach
for RUL prediction related to model optimization and
feature engineering in detail. Section 4 is about the
results of RUL prediction and discussion, and finally, Sec-
tion 5 summarizes the conclusions.
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2 | RELATED WORK

2.1 | RNN architecture

RNN is a DNN class applied to assess time dependencies
and input features on a sequential input to predict future
output, with particular characteristics called internal cell
state or memory. Therefore, each neuron's output varies
depending on the current input and the background of pre-
viously hidden state outputs. Figure 1 indicates the function
of the unfolded RNN structure with a feedback loop on a
simple RNN, which can retain background information effi-
ciently according to the number of time steps.28

The assumption is that the input and output vectors
of the RNN are X(t) = {x0, x1,…, xt} and Y(t) = {y0, y1,…,
yt}, respectively, which can have arbitrary dimensions.
Hence, the battery dataset applied to train the model can
be illustrated as the following:

Ψ¼ X ,Yf g ð1Þ

Here, xt = [I, V, T] and yt = [C(t)], where

I¼ I1,…,Im½ �, m¼number of current� related features:

V ¼ V 1,…,In½ �, n¼number of voltage� related features:

T¼ T1,…, Ip
� �

, p¼number of temperature� related features:

8><
>:
and C(t) is the measured battery capacity at cycle t.

RNNs operate by an iterative update of a hidden state,
h, that is also a vector with arbitrary dimensions. First, at
any step t, the next hidden state ht is determined with the
next input xt and the hidden state ht�1. Secondly, ht is
used to measure the next yt output. The equations that
mathematically define a single RNN cell in a single-layer
RNN can be seen Equations (2) and (3) as follows:

ht ¼ tanh WhxxtþWhhht�1þbhð Þ ð2Þ

yt tð Þ¼Wyhhtþby ð3Þ

where Whx, Whh, and Wyh imply the weights of each step.
It should be noted that what makes the RNN recurrent is
to apply the same weights in each step. In particular, only
three sets of weights are used by a typical vanilla RNN to
make calculations. Whh is employed for all ht� 1! ht
links, Wxh is applied for all xt! ht links, and Wyh is
employed for all ht! yt links. Also, a couple of biases
have been applied for RNN: bh and by.

2.2 | GRU-RNN architecture

The RNN may be used as a network memory, different
from the feedforward neural network. Consequently,
the current state is associated with the previous state
and the current input. That helps the RNN handle time
series problems by storing, preserving, and evaluating
the previous complex signals over a specific time. RNNs
are extensively applied in numerous applications such
as prediction of time series, system modeling, and natu-
ral language processing. Nevertheless, complex hidden
layers and long time series may contribute to the
exploding and vanishing of gradients throughout back-
propagation procedures. Across all the enhanced RNNs,
the GRU-RNN not only has a simple structure but also
able to capture long-term sequential dependencies. Fur-
thermore, the gradients are more resistant to vanishing
compared to other RNNs, and fewer memory resources
are needed. Therefore, GRU-RNN is ideal for dealing
with highly correlated issues with time series, such as
RUL prediction of the battery system. The structure of
the GRU-RNN cell and its deep learning model is shown
in Figures 2 and 3, respectively, which will be explained
in Section 3.2.

FIGURE 1 The structure of the simple RNN and

unfolded RNN [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 2 The structure of gated recurrent unit memory cell

[Colour figure can be viewed at wileyonlinelibrary.com]
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Behind the GRU-RNN idea, there are two main key
parameters, which are called update gate and reset gate.
Both the reset gate rt and update gate zt are relevant to xt
and ht�1. xt is the corresponding input sequence, and ht�1

is the memory cell output at the previous time point.
These two gates have distinct network functions. Four
primary Equations (4)-(7) are used to calculate the GRU-
RNN forward propagation.

• Update gate: The update gate is developed to monitor
the previous data's effect on the current state. The big-
ger the updated value is, the more previous informa-
tion is utilized to specify the current state. Equation (4)
reflects the GRU-RNN update operation.

z tð Þ¼ σ wz: ht�1,xt½ �þbzð Þ ð4Þ
• Reset gate: The reset gate controls the level of igno-

rance of information in ht�1. If the value of the reset gate
is small, the information is more overlooked. This param-
eter can be applied for the prediction of RUL of LIBs for
rejecting outliers, noises, and unnecessary degradation
information between adjacent cycles.29 This is because
the structure of the RNN-based model considers long-
term information, and which leads to suppress the effect
of weight at the adjacent cycle data.30 Equations (5) and
(6) reflect the GRU-RNN reset operation.

r tð Þ¼ σ wr : ht�1,xt½ �þbrð Þ ð5Þ

~h tð Þ¼ tanh w~h: rt�ht�1,xt½ �þb~h
� � ð6Þ

• Output: Equation (7) indicates the GRU-RNN output
operation.

h tð Þ¼ 1� ztð Þ�ht�1þ zt�~ht ð7Þ

The derivatives of σ and tanh are the function of the
primary function, therefore the derivatives can be com-
puted by the primary functions.

σ xð Þ¼ 1
1þexp �xð Þ ð8Þ

tanh xð Þ¼ exp xð Þ�exp �xð Þ
exp xð Þþexp �xð Þ ð9Þ

3 | GRU-RNN-ORIENTED RUL
PREDICTION

To clarify the steps taken for both feature engineering
and RUL prediction methods, the framework of the pro-
posed method is indicated in Figure 4.

3.1 | Feature engineering

Before training the model, it is necessary to do pre-
processing on raw data. The statistical characteristics are
effective methods with the advantages of low time con-
sumption for calculation and also simplicity of imple-
mentation.31 Many studies have been used statistical
features for diagnosis and prognosis problems,32 and it
has shown strong results. RMS, Kurtosis, Skewness,
Peak-Peak, Mean are the most commonly used time-
domain features in industrial applications.33

The measured terminal voltage and load current of
any battery will vary as it is charged and discharged. The
essential characteristics such as the nominal voltage of
the cell, peak charged, and end of life (EOL) can be
extracted from each charge and discharge curve in cycles.
In this work, battery characteristic during discharge
mode has been used for feature extraction. The terminal
and current-voltage profiles of a charge-discharge life
cycle for 4 battery cells (called B0005, B0006, B0007, and
B0018) are indicated in Figure 5 which will be explained
in detail in Section 4.1.

In our case, the feature engineering problem is
divided into three parts:

1. 30 time-domain features are extracted from battery
signals, including voltage, current, and temperature,
based on statistical equations. These formulas are
listed in Table 1.

0 0 0 0 0
0 0 0 0

F1 F2 F3 F15...

F1 F2 F3 F15...F4

Zero masking layer
Multivariate time series input

GRU layers

Cell Cell

Remaining capacity label

Dropout layer Dense layers

FIGURE 3 The structure of the deep learning model for RUL

prediction [Colour figure can be viewed at wileyonlinelibrary.com]
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2. These features are sorted according to feature
importance and separated the features based on the
Pearson correlation, which has correlated with the
coefficient above 0.5. For the purpose of quantita-
tive confirmation of the linear correlation between
the capacity and extracted features, Pearson corre-
lation analysis can be used, which is computed as
Reference 33:

r¼
Pn
i¼1

HIi� �HIð Þ Ci� �Cð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

HIi� �HIð Þ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
Ci� �Cð Þ2

s ð10Þ

where HI, C, �HI , and �C denote to feature, capacity, mean
values of the HI, and mean values of the capacity,

(A) (B)

(C) (D)

FIGURE 5 The terminal

and current-voltage profiles of a

charge–discharge life cycle; A,
B0005, B, B0006, C, B0007,

and D, B0018 [Colour figure can

be viewed at

wileyonlinelibrary.com]

FIGURE 4 Framework of battery

remaining useful life prediction [Colour

figure can be viewed at

wileyonlinelibrary.com]
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respectively. The value of the Pearson correlation coeffi-
cient r ranges between �1 and +1. If the correlation is
equal to ±1, features and capacity are completely corre-
lated linearly, and no correlation exists in the case that it
equals 0.

3. Finally, feature selection has been made based on the
RF algorithm owing to eliminating the less-relevant
features and effective data training. To illustrate the
importance of pre-processing, Figure 6 shows that
the average of the extracted features coefficient for
pre-processing is 0.76, and after pre-processing is 0.88.
And also Figure 7 indicates the heatmap of selected
features using RF algorithm. To better understand the
problem, the process of selecting the best features by
RF algorithm is described below.

RF is an intelligent ensemble learning algorithm
based on a decision tree, which contains a group of
structured tree classifiers h(x, Θk), (k = 1, 2, 3,…), in
which a unit vote is cast by each tree for the especially
known class at input x and Θk is identically distributed
random vectors and also independent.34 A margin

function mg(.), which is referred to as the confidence
level for the RF model, needs to be defined with a per-
formance index,

mg x,yð Þ¼ avkI hk x,Θkð Þ¼ yð Þ�maxj≠ yavkI hk x,Θkð Þ¼ jð Þ
ð11Þ

In this equation, I(.) implies the indicator function, as
well as av(.), is a mean value. This index is divided into
two terms: the first term is referred to as the average
number of votes at (x, y) for the right class, and the other
term implies the average vote for the most class excluding
the right class. In the case of large values of the margin,
the confidence level will be high. Afterward, the generali-
zation error PE* is obtained through the following
equation:

PE� ¼ Px,y mg x,yð Þ<0ð Þ ð12Þ

where P(.) denotes the probability. By increasing the
number of trees, the convergence of nearly all sequences
Θk, PE

* is tended toward the following equation:

TABLE 1 Statistical formulas in the time-domain

Name Formula Name Formula Name Formula

Mean
Fm ¼ 1

N

PN
i
x ið Þ Shape factor (SHF) Fshf ¼ Frms

1
N

PN
i

jx ið Þj
Skewness factor (SF)

Fsf ¼
1
N

PN
i

x ið Þj j3

Frms
3

SD (STD)
Fstd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i

x ið Þ��xð Þ
s

Crest factor (CF) Fcf ¼ Fp

Frms
Kurtosis factor (KF)

Fkf ¼
1
N

PN
i

x ið Þj j4

Frms
4

Root mean square (RMS)
Frms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i
x ið Þ2

s
Impulse factor (IF) Fif ¼ Fp

1
N

PN
i

jx ið Þj
Clearance factor (CF) Fclf ¼ Fp

1
N

PN
i

ffiffiffiffiffiffiffi
jx ið Þj

p

Peak Fp = max j x(i)j — — — —

Note: x(i) is the battery signals series; �x is the mean value of the series.

(A) (B)

FIGURE 6 Feature

extraction and selection: A, all

statistical features coefficient

correlation and B, selected

features correlation coefficient

[Colour figure can be viewed at

wileyonlinelibrary.com]
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Px,y PΘ h x,Θð Þ¼ yð Þ�maxj≠ yPΘ h x,Θð Þ¼ jð Þ<0
� � ð13Þ

When the generalization error is converged, a consid-
erably low value for generalization error can be produced
by RF. Also, RF does not overfit by adding more trees.
The upper bound for the PE* is determined by

PE� ≤
ρ 1� s2ð Þ

s2
ð14Þ

where ρ denotes the correlation average value, s implies
the strength of each tree in the RF model. Hence, by
decreasing the correlation among trees and raising the
strength of each tree, the RF model would give higher

precision of the predictions. For the purpose of showing
the performance of the features selected by RF, the
heatmap is plotted which F1, F2,…, F15, are 15 selected
features and has a high correlation with Cap as output,
which is the battery capacity.

3.2 | GRU-RNN training

As it can be seen in Figure 3, one input layer fed into a
GRU layer with 50 neurons was applied to build the
GRU-RNN. In turn, this layer is fed into two hidden
layers with 50 neurons for both of them, which then fed
into a fully connected dense layer of 20 neurons. Given

(A) (B)

(C) (D)

FIGURE 7 Heatmap of selected features using RF algorithm; A, B0005, B, B0006, C, B0007, and D, B0018 [Colour figure can be viewed

at wileyonlinelibrary.com]
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that the battery data is time series, this work takes into
account the time dependency, which has been over-
looked in most existing papers, and it was not a delay
(time lag) for training data. Due to the use of multivariate
time series input, the zero masking layer has been con-
sidered for sequence processing. Moreover, the third
layer is a fully connected dense layer applying a linear
transformation for achieving the RUL prediction results
using the sigmoid activation function, which is per-
formed as follows:

RUL�
t ¼ σ Wt:htþbsð Þ ð15Þ

where Wt and bs respectively denote the weight vector
and biases of the fully connected layer at time step t. The
mean absolute error (MAE) is chosen as the loss func-
tion, and it is calculated as indicated in Equation (16):

L¼
Xl
t¼1

RULt�RUL�t
� �2 !

=l ð16Þ

where RULt implies the measured value, RULt
* denotes

the predicted value, and l is the length of the battery dis-
charge cycles.

3.3 | Adam optimization algorithm

Deep learning scientists have often sought to improve the
model's efficiency and loss function value by the model's
training epochs. Stochastic gradient descent (SGD) is one
of these approaches that give a single learning rate for all
weight updates and does not modify the learning rate
throughout the training.35 Nevertheless, this method is
not effective for the training model due to frequent fluc-
tuations; it will keep overshooting near to the desired
exact minima and very time-consuming to converge to
the correct network weights, which is inapplicable for
online battery RUL prediction. Root mean square propa-
gation (RMSprop) is another commonly used optimiza-
tion method that overcomes the decaying learning rate
problem of the SGD method. However, both of them still
have the problem of different momentums for different
parameters.

Therefore, the Adam algorithm was proposed by
Kingma and Ba36 to introduce the concept of adaptive
momentum along with the adaptive learning rate, which
computes the exponentially decaying average of previous
gradients along with an adaptive learning rate. The key
advantages of using the Adam algorithm in convex opti-
mization issues are invariant to limited memory

requirements and diagonal rescale of gradients. The
Adam optimizer is a hybrid version of the AdaGrad, and
RMSProp algorithms.37,38

3.4 | Early stopping technique to prevent
overfitting

Early stopping is widely used to implicitly regularize
some convex learning problems.39 Since the under-
standing and implementation are simple and have been
reported to be superior to regularization methods in
many studies, for example.40 During the training, the
model is evaluated on a holdout validation dataset after
each epoch. The training process is stopped if the
model's performance on the validation datasets starts
to deteriorate (ie, the loss is beginning to rise or accu-
racy is beginning to decrease). This technique is
referred to as an early exit, so this is called an early
stopping and is one of the most frequently used ways of
regularizing neural networks. Its success lies in its
quality and simplicity. In some papers, results confirm
that early stopping could potentially improve generali-
zation performance.

4 | RESULTS AND DISCUSSION

Matlab 2019 performed data preprocessing and feature
engineering in this work, and Python 3.6 was also used
for model simulation and training. The simulation was
performed on a laptop with a graphic card NVIDIA
GeForce 930 M at 6 GB, 64-bit operating system and an
Intel Core i7 � 6500U processor (6 MB cache, up to
3.18 GHz), x64-based processor.

For a fair comparison, model parameters (such as
learning rate = 1e�5, lag = 8, epoch = 1000) are consid-
ered the same values. Besides, the batch size tuning has
been done by a common method, which is called the grid
search method. We set an early stopping for both models
if the validation accuracy does not increase for 1000
global steps; the training will stop. It is worth noting that,
due to the use of the reduceLR technique, the impact of
the learning rate has diminished, and it has been no need
for exact tuning.

4.1 | Data description and evaluation
criteria

In the present article, the public battery dataset of NASA
Ames Prognostics Center of Excellence is used to validate
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our proposed method. Three different operational profiles
(an impedance, discharge, and charge) were used at room
temperature to run four Li-ion batteries (B0005, B0006,
B0007, and B0018). In this article, the authors only used
the discharging mode for RUL prediction. Discharging
was performed at a constant current level of 2A until the
falling of the voltage of batteries B0005, B0006, and
B0007 to 2.7, 2.5, and 2.2 V, respectively. Repeated charge
and discharge cycles lead to rapid battery aging, although
impedance measurements give an overview of internal
battery parameters altering with the progression of the
aging process. The tests were completed in the case that
the battery reached EOL criteria on a 30% fade in rated
capacity (from 2 to 1.4 Ahr).41

The concept of building a validation set is to evaluate
the model's performance prior to applying it to make pre-
dictions. The development of a validation set for time
series issues is challenging since the time component
must be considered. They represent calculation precision
and are often applied to compare the pros and cons of
algorithms. As the train-test-split or k-fold validation can-
not be used directly, the pattern will be disrupted in the
series. Hence, three evaluation criteria of RUL prediction
error, root mean square error (RMSE), and MAE are used
to calculate and demonstrate the suggested approach's
precision and stability. The equations are given in Equa-
tions (4)-(19).

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm
i¼1

Ŷ ið Þ�Y ið Þ� �2s
ð17Þ

MAE¼ 1
m

Xm
i¼1

j Ŷ ið Þ�Y ið Þ� � j ð18Þ

RULerror ¼RULpredict�RULtrue ð19Þ

where Y (i) and Ŷ ið Þ denoted to the predicted capacity
and measurement capacity series, respectively. i is the
number of cycles between the actual battery and the first
prediction cycle. Besides, to assess the uncertainty quan-
tification of the proposed model, the 95% confidence
interval (CI) is performed for evaluation of the uncer-
tainty as

95%CI¼ �̂Y ið Þ�1:96�σ2 Ŷ ið Þ� � ð20Þ

where 95%CI is the confidence interval for RUL predic-
tion. �̂Y ið Þ and σ2 denote mean values of RUL prediction
and variance of the predicted values, respectively.

4.2 | RUL prediction results for battery
degradation data

Four datasets from Figure 8 show an accelerating aging
process obtained from the discharge mode of the battery.
It shows that the battery degradation goes down during
the time due to internal reactions in charging and dis-
charging cycles. To verify the proposed model, we consid-
ered two scenarios, including training the model with
60% dataset and the other one with 80%. In the first sce-
nario, Figure 9 shows the battery RUL prediction with
60% training data for four different cases in which the
start point for prediction is from the 97th cycle for B0005,
B0006, B0007, and 75th cycle for B0018. Figure 10 shows
the prediction error for both GRU-RNN and LSTM-RNN
as well. To indicate the GRU-RNN model's accuracy, a
comparison has been made between the GRU-RNN,
LSTM-RNN, and support vector machine (SVM)
methods. Figure 11 shows a box plot of all training and
testing errors together. GRU-RNN has the lowest error
for all the cases, and the LSTM-RNN has less accuracy
than GRU-RNN. Meanwhile, the SVM has a big differ-
ence from them, which is not suitable for the long-term
dependency prediction. Given that the evaluation of
models with MAE, RMSE, and RUL prediction, Table 2
provided a comparison between the models. For the sec-
ond scenario, we applied 80% data for training and com-
pared the different methods. Figure 12 shows the battery
RUL prediction with 80% training data for four different
cases, which the start point for prediction is from the
129th cycle for B0005, B0006, B0007, and 100th cycle for
B0018. The prediction error is shown in Figure 13, and
also the box plot of all training and testing errors in
Figure 14 illustrates the GRU-RNN has less amplitude of
error than the other methods. For better methods
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FIGURE 8 NASA dataset [Colour figure can be viewed at
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comparison, Table 3 is provided the MAE, RMSE, and
RUL prediction error. The results achieved in the above
section show that the deep learning models are much

more precise compared to a conventional method
because of advantages such as capturing long-term
dependency time series data.

(A) (B)

(C) (D)

FIGURE 9 RUL prediction

(60% of training): A, B0005, B,

B0006, C, B0007, and D, B0018

[Colour figure can be viewed at

wileyonlinelibrary.com]

(A) (B)

(C) (D)

FIGURE 10 Prediction error (60%

of training); A, B0005, B, B0006, C,

B0007, and D, B0018 [Colour figure can

be viewed at wileyonlinelibrary.com]
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In addition, to highlight the proposed method, the
average RMSE percentage for all cases has been listed in
Table 4. This table shows the GRU-RNN error is about
2% which is more accurate compared to its peer and

appropriate for real-world systems. Moreover, the exe-
cuted time for GRU-RNN is about 14 seconds which
demonstrates that due to fewer parameters, the learn-
ing speed is faster than the speed of LSTM
(19 seconds). However, SVM has a high execution
speed due to its straightforward structure, but it is not
suitable for time series problems and has very weak
prediction accuracy.

5 | CONCLUSION

As a crucial tool for PHM, the RUL prediction is capable
of ensuring a possible Li-ion battery failure time in
advance. One of the most crucial concerns in the RUL
prediction of Li-ion batteries is the way of appropriately
learning the long-term dependencies of several hundred
cycles while limited degradation data are available.

This paper has been presented for a data-driven
model to monitor battery health. The GRU RNN has
been used to predict the battery RUL. To achieve high
accuracy prediction, important features based on Pearson
correlation and RF algorithm have been applied to feed

(A) (B)

(C) (D)

FIGURE 11 Box plot of prediction error (60% of training): A, B0005, B, B0006, C, B0007, and D, B0018 [Colour figure can be viewed at

wileyonlinelibrary.com]

TABLE 2 RUL prediction results with 60% of training

Battery cell Method MAE RMSE RUL error

B0005 GRU 0.0115 0.0145 0.6213

LSTM 0.0124 0.0174 0.6337

SVM 0.1328 0.1385 6.7772

B0006 GRU 0.0127 0.0165 0.6510

LSTM 0.0136 0.0211 0.6878

SVM 0.1777 0.1884 9.0664

B0007 GRU 0.0268 0.0290 1.3680

LSTM 0.0367 0.0392 1.8753

SVM 0.1283 0.1349 6.5481

B0018 GRU 0.0267 0.0389 1.0681

LSTM 0.0561 0.0657 2.2460

SVM 0.0302 0.0455 1.8116
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(A) (B)

(C) (D)

FIGURE 12 RUL

prediction (80% of training); A,

B0005, B, B0006, C, B0007,

and D, B0018 [Colour figure can

be viewed at

wileyonlinelibrary.com]

(A) (B)

(C) (D)

FIGURE 13 Box plot of

prediction error (80% of

training); A, B0005, B, B0006, C,

B0007, and D, B0018 [Colour

figure can be viewed at

wileyonlinelibrary.com]
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into the GRU-RNN as a multivariate input. Moreover, to
optimize the training network, the Adam technique has
been applied for convex optimization, which requires low
memory. At the same time, an early stopping technique

has been used to deal with overfitting and leads to
enhance the performance of the GRU-RNN model.

For the experimental and evaluation of our proposed
method, the NASA Li-ion battery dataset has been
applied. The findings have been compared with its sibling
technique, which is called LSTM. The results highlight
the proposed method has higher accuracy and efficiency
than LSTM-RNN and SVM.
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