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A B S T R A C T   

Lithium (Li) metal batteries though with high energy density are still facing issues like Li dendrite growth, dead 
Li formation, and thick solid electrolyte interphase (SEI) formation, hindering their long-term stability. Recently, 
Li-Ag alloys have been reported to potentially address these challenges possibly due to their superior conduc
tivity, lithiophilicity, and mechanical stability. In the pursuit of high-energy-density batteries, Li-Ag alloys 
typically employ a high Li content phase (γ1). In this study, we applied density functional theory (DFT) calcu
lations to compare the thermodynamic stability, Li adsorption, and Li diffusion of Ag-rich Li-Ag alloy within the 
γ1 phase (AR-γ1), Ag-poor Li-Ag alloy within the γ1 phase (AP-γ1), and pure Li. AR-γ1 showed better thermo
dynamic stability and improved Li adsorption and diffusion properties compared to AP-γ1 and pure Li. Elec
trochemical tests further confirmed the advantages of AR-γ1 in terms of electrode kinetics and cell stability 
compared to AP-γ1 and pure Li. Our study offers guidance for the selection of the most suitable Li-Ag alloys that 
can be utilized in high-energy-density lithium batteries.   

1. Introduction 

Li metal batteries are being praised as promising contenders for the 
next generation of energy storage systems due to the exceptionally low 
reduction potential (− 3.04 V vs. SHE) and the remarkable theoretical 
specific capacity (3860 mAh g− 1) offered by Li metal anodes. [1–5] The 
growth of Li dendrite [6,7] and the presence of dead Li [8,9] contribute 
to the susceptibility of batteries to internal short circuits. Additionally, 
the electrolyte’s severe decomposition can lead to the formation of a 
thicker solid electrolyte interphase (SEI). [10–12] These factors collec
tively present substantial challenges in ensuring the prolonged safe 
operation of Li metal batteries. Addressing these issues is crucial for 
establishing the long-term viability and safety of these batteries. To 
effectively address these issues, research focus has been directed to
wards Li alloy anodes, encompassing Li-Al, [13] Li-Mg, [14] Li-Sn, [15, 
16] and Li-Ag, [17–19] etc., driven by their superior properties like 
cost-effectiveness, [20] reduced chemical reactivity, [21] and Li storage 
capability. [22] Among these alloys, the adoption of Li-Ag alloy anodes 

emerges to be particularly promising, attributed to their facilitated 
phase transitions, [23] moderate chemical stability, remarkable affinity 
for Li (lithiophilicity), and outstanding mechanical stability. [24–27] 
The combination of these attributes positions Li-Ag alloy anodes as a 
strong and hopeful candidate for advanced alloy anode applications. 

As commonly understood, the pursuit of high-energy-density batte
ries often involves the utilization of Li alloy anodes with high Li content. 
For instance, Kyotani et al. [28] discovered that Li-rich Li-Si alloy, with 
the composition of Li21Si5, serves as a Li-ion battery anode material with 
excellent cycling stability and energy density. Choi et al. [29] promoted 
stable whisker growth on Li metal electrodes by the incorporation of 
1.5 at% magnesium into Li, successfully achieving dendrite suppression 
and enhanced energy density. Jin et al. [30] controlled Li deposition 
within metal film via reversible solid-solution phase transition (Li20Ag), 
preventing dendrite formation. However, the aforementioned studies 
did not compare different alloy phases. Considering the allowed 
composition space of the solid-solution phase, such as the γ1 phase in 
Li-Ag alloy (Fig. 1a), the determination of the optimal Li content within 
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the solid-solution phase is yet to be explored. This effort aims to strike a 
balance between achieving high energy density and maintaining 
optimal electrochemical performance. 

In this study, we comprehensively investigated the Ag-rich and Ag- 
poor γ1 solid solution phases of Li-Ag alloy anodes, namely AR-γ1 and 
AP-γ1, along with pure Li. Employing density functional theory (DFT) 
calculations, we compared the thermodynamic stability, Li adsorption 
energy, and Li diffusion within AR-γ1, AP-γ1, and pure Li. Subsequently, 
experimental validation of their electrochemical performance was con
ducted. Our findings demonstrate that AR-γ1 outperforms the other two 
phases. These findings offer valuable insights to guide the selection of Li 
alloy anodes with high energy density and cycling stability. 

2. Computational methodology 

DFT [31] calculations were executed within the Vienna Ab initio 
Simulation Package (VASP). [32] The interaction between ions and 
electrons was treated using the projector augmented-wave (PAW) 
method. [33,34] All calculations utilized the generalized gradient 
approximation Perdew–Burke–Ernzerhof (GGA-PBE) exchange and 
correlation functional. The wave function energy cutoff was set to 

520 eV. For Brillouin zone integration, a 2 × 2 × 2 k-point mesh was 
utilized with the Gamma centered k-mesh. Convergence limits were set 
to 1 × 10− 5 eV/atom for energy and 0.01 eV/Å for force calculations. 

2.1. Formation energy 

The thermodynamic tendency for Li to form an alloy with Ag can be 
evaluated using the formation energy of the LimAgn alloy at 0 K, indi
cated as Ef as follows: [35]  

Ef = (E(LimAgn) – mE(Li) – nE(Ag)) / (m + n)                                   (1) 

Here, E(LimAgn), E(Li), and E(Ag) are the DFT total energies of the 
bulk LimAgn, Li, and Ag, respectively. 

2.2. Vacancy formation energy 

The formation energy of a Li vacancy (Ef
vac) [36,37] was computed 

based on the following equation:  

Ef
vac= Evac + ELi – Ebulk                                                                   (2) 

Fig. 1. The phase diagram and crystal structures of Li-Ag alloys. (a) The Li-Ag alloys phase diagram. The Li-Ag phase diagram is obtained according to the in
formation provided in refer [49]. (b) The AR-γ1 structure. (c) The AP-γ1 structure. (d) The Li structure. The Li atoms are denoted in green and the Ag atoms in grey. 
The crystal structure visualizations were created using the VESTA software. [50]. 

Fig. 2. The thermodynamic stability of AR-γ1, AP-γ1, and Li. (a) Formation energy and (b) Reaction energy between AR-γ1, AP-γ1, Li, and six solid-state electrolytes.  
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Here, Evac represents the total energy of the model containing a Li 
vacancy, and Ebulk corresponds to the total energy of the model without 
Li vacancy. 

2.3. Surface energy computation 

Surface energy (γ) measures the energy difference between a freshly 
generated surface and the corresponding bulk structure, [38,39] which 
offers critical insights into the surface’s stability and reactivity. The 
formula for surface energy is:  

γ = (Eslab – Ebulk) / 2 A                                                                    (3) 

Here, Eslab is the total energy of the slab structure and A denotes the 
surface area. To investigate the surface energy of the three phases, 
supercell models of 2 × 2 × 2 or 3 × 3 × 3 were utilized, accompanied by 
a 12 Å vacuum layer along the Z direction to prevent interactions be
tween adjacent slabs. We have constructed symmetric surfaces, 
including (100), (110), and (111) planes with different terminations. For 
more detailed information regarding the surface models, please refer to 
Figure S2 and Table S1 in the Supporting Information. 

2.4. Adsorption energy computation 

A Li atom was initially positioned 3 Å away from the surface at three 

Fig. 3. A comparative analysis of AR-γ1, AP-γ1, and pure Li: (a) Surface energy, (b) Adsorption energy of Li, and (c) Li diffusion barrier.  

Fig. 4. (a) The Nyquist plots for AR-γ1, AP-γ1, and pure Li. (b) Voltage 
behavior of symmetric cells for AR-γ1, AP-γ1, and pure Li at the current density 
and areal capacity of 0.5 mA/cm2 and 0.5 mAh/cm2. 

Table 1 
Resistances obtained through equivalent circuit fitting of EIS data.  

Phases Rb (Ω) RSEI (Ω) Rct (Ω) 

AR-γ1  27.27  3.69  14.53 
AP-γ1  28.60  5.53  8.80 
Li  30.68  16.72  0.09  
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distinct adsorption sites (bridge, hollow, and top). The adsorption en
ergy (Eads) [40,41] of Li atom on the slab surface was determined using 
the following equation:  

Eads = Eslab+Li – Eslab – ELi                                                               (4) 

Here, Eslab+Li signifies the energy of the slab model with the Li atom 
adsorption, and ELi stands for the energy per Li atom in the bulk mate
rial. Lower adsorption energy corresponds to stronger Li atom-surface 
binding, indicating a more stable adsorption configuration. 

2.5. Li diffusion barrier 

The diffusion barrier of Li is obtained by employing the nudged 
elastic band (NEB) [42,43] calculations. This method facilitates the 
identification of minimum-energy migration paths as well as the energy 
barrier associated with the diffusion process. 

3. Experimental section 

3.1. Synthesis of the Li-Ag alloy 

The molten experiment was conducted in an argon-filled glovebox 
(Mikrouna), maintaining O2 and H2O levels below 0.01 ppm. In a 
standard procedure, fragments of Li metal foil were placed into a 
stainless steel crucible and heated on a hot plate to around 400 ◦C, 
generating molten Li. Subsequently, Ag power (Alfa Aesar, >99.99%) 
was introduced into the molten Li. To ensure thorough dispersion and 
uniform mixing, the mixture was manually stirred with a stainless steel 
stick for at least 30 minutes. Following this, the mixture was transferred 
onto a clean nickel plate for cooling and later sealed in plastic film. Two 
distinct atomic ratios of Li over Ag, specifically 11:1 (AR-γ1) and 20:1 
(AP-γ1), were considered for the study. Finally, the AR-γ1 and AP-γ1 
foils were fabricated through external rolling, outside the glovebox. 

3.2. Synthesis of LiFePO4 (LFP) cathode 

For evaluating the electrochemical performance of the full cell, the 
LFP cathode was prepared using a conventional fabrication technique. 
This involved dispersing 0.8 g of LFP active powder (Macklin, battery- 
grade), along with 0.1 g Super P carbon black (Songjing Corp) and 
0.1 g poly(vinylidene fluoride) (PVDF), in 4 mL of N-Methyl-2-pyrroli
done (NMP) solvent. The mixture was stirred on a magnetic stirrer for 
over 24 hours before being coated onto an aluminum foil using a scraper 
blade. Subsequently, the composite cathode was dried in a vacuum at 
120 ◦C for more than 24 hours to eliminate any residual solvent. 

3.3. Electrochemical characterization 

Cell resistance was evaluated through electrochemical impedance 
spectroscopy (EIS) employing a Biologic VMP-3 system. The testing was 

conducted across a frequency range from 7 MHz to 100 mHz, utilizing a 
perturbation amplitude of 10 mV. The charge/discharge cycling was 
carried out by the LAND CT2001A battery tester at a current density of 
0.4 mA cm− 2 under a voltage range of 2.5–4.0 V. The CR2032-type coin 
cells were assembled in an argon-filled glovebox. LFP was employed as 
the cathode, polypropylene (5 μm-thick) as the separator, and either Li, 
AR-γ1, or AP-γ1 foil as the anode. To ensure uniform testing conditions, 
a standardized 60 μL of electrolyte was utilized in each coin cell. This 
electrolyte consisted of 1 M Li bis(trifluoromethane)sulfonamide 
(LiTFSI) dissolved in a mixture of 1,3-dioxolane (DOL) and 1,2-dime
thoxyethane (DME) in a 1:1 v/v ratio. 

4. Results and discussion 

4.1. Phase diagram and crystal structure 

As illustrated in Fig. 1a, the Li-Ag alloy phase diagram exhibits six 
distinct phases: α phase, β phase, γ3 phase, γ2 phase, γ1 phase, and δ 
phase. [30,44] Within the realm of Li-Ag alloys, the Li-rich composition 
holds considerable promise to yield a notably high energy density, 
garnering specific focus on the γ1 phase. Meanwhile, the γ1 and δ phase 
were reported in previous studies. [45–48] The structural configurations 
of AR-γ1, AP-γ1, and pure Li represent the Ag-rich and Ag-poor γ1 phase 
and δ phase, as depicted in Fig. 1b-d, respectively. 

4.2. Thermodynamic stability 

Assessing thermodynamic stability provides insights into material 
stability and reaction trends, playing a crucial role in material design 
and performance prediction. [51] We performed calculations to assess 
the thermodynamic stability of AR-γ1, AP-γ1, and Li based on formation 
energy, which are − 0.028 eV/atom, − 0.017 eV/atom, and 0 eV/atom, 
respectively, as shown in Fig. 2a. These findings suggest that the AR-γ1 
possesses the highest thermodynamic stability. The heat map presented 
in Fig. 2b depicts the calculated reaction energy between AR-γ1, AP-γ1, 
Li, and six solid-state electrolytes, namely, Li10GeP2S12, Li1.3Al0.3

Ti1.7(PO4)3, Li6PS5Cl, Li3InCl6, Li2La2Ti3O10, and Li7La3Zr2O12. Notably, 
all three phases display relatively low reaction energies (− 15 to 
− 14 meV/atom) when paired with Li7La3Zr2O12. Conversely, the reac
tion energies between these three anodes and Li10GeP2S12, Li1.3Al0.3

Ti1.7(PO4)3, Li6PS5Cl, Li3InCl6, and Li2La2Ti3O10 range from − 660 to 
− 127 meV/atom, implying potential chemical reaction at the interface. 
Among the three phases, AR-γ1 exhibits the highest compatibility with 
solid-state electrolytes, making it a promising candidate for advanced 
battery applications. On the other hand, vacancies exert a significant 
influence on a material’s physical, mechanical, and thermodynamic 
properties, including diffusion, specific heat, and Young’s modulus. [52] 
Hence, employing DFT calculations, we assessed the vacancy formation 
energy for AR-γ1, AP-γ1, and pure Li using Eq. (2), as depicted in 
Figure S1. Remarkably, Li metal exhibits a higher Li vacancy formation 
energy than Li-Ag alloys, with AR-γ1 displaying a higher vacancy 

Fig. 5. (a) Charge-discharge behavior of AR-γ1 and Li. (b) The cycling performance of AR-γ1 and Li anode with LFP cathode at a current density of 0.4 mA/cm2.  

Y. Huang et al.                                                                                                                                                                                                                                  



Next Materials 4 (2024) 100188

5

formation energy than AP-γ1. This distinction might play a role in the 
observed enhancement of the Li diffusion coefficient in Li-Ag alloys 
when compared to pure Li. [30,53] 

4.3. Surface energy, adsorption energy, and diffusion barrier 

Prior to investigating the influence of lithiophilic sites during Li 
plating on AR-γ1, AP-γ1, and pure Li surfaces, the surface energy is 
computed to identify the most stable surface facet. Fig. 3a highlights that 
the (100) facet is the most stable surface orientation for AR-γ1, AP-γ1, 
and pure Li, as denoted by the asterisk (*). The respective surface energy 
values are 0.423, 0.439, and 0.445 J/m2. Details regarding other surface 
models and energies can be found in Table S1. Consequently, the (100) 
crystal facets are selected for Li adsorption calculations. In Fig. 3b, the 
hollow site emerges as the preferred adsorption location, while top and 
bridge sites are also possible. Detailed adsorption energy values are 
listed in Table S2. For AR-γ1, AP-γ1, and pure Li, the Li adsorption en
ergies (Eads ) at hollow sites are − 1.293, − 0.987, and − 0.702 eV, 
respectively. These results indicate that AR-γ1 and AP-γ1 exhibit lower 
adsorption energies than pure Li, with AR-γ1 showing the lowest Eads. 
This observation suggests that Li-Ag alloys tend to have stronger Li 
adsorption onto the surface, and Li adsorbed on AR-γ1’s surface is 
particularly stable. Due to Ag’s affinity for Li, the Li diffusion barriers in 
Li-Ag alloys are theoretically lower than pure Li. As depicted in Fig. 3c, 
energy barriers for Li diffusion are 0.105, 0.139, and 0.295 eV for AR-γ1, 
AP-γ1, and Li, respectively. Thus, AR-γ1 and AP-γ1 facilitate a more 
efficient Li transport rate than pure Li. Due to the small diffusion energy 
barrier and excellent electronic conduction properties exhibited by the 
AR-γ1 alloy, herein, the AR-γ1 alloy demonstrates exceptional ionic and 
electronic transport channels. 

4.4. Experiment performance 

AR-γ1 and AP-γ1 have been characterized using XRD (Figure S2) and 
SEM (Figures S3 and S4). As depicted in Figure S2, the XRD peaks of AP- 
γ1 are consistent with those reported by Jin et al. [30] AR-γ1 is 
composed of mixed phases, including the γ1 phase and Li9Ag4 phase. 
The peak for Cu phase are from the Cu substrate. The SEM images in 
Figure S3a-b and Figure S4a-b reveal that the surfaces of AR-γ1 and 
AP-γ1 are smooth. Additionally, the corresponding surface and 
cross-section EDS maps (Figure S3c,f and Figure S4c,f) for AR-γ1 and 
AP-γ1, demonstrate the uniform distribution of Ag elements across the 
foil. Additionally, in Figure S3e and Figure S4e, the thickness of AR-γ1 
and AP-γ1 falls within the range of 50–60 μm, showing promise for 
achieving high energy density. 

Electrochemical Impedance Spectroscopy (EIS) [54–56] is an elec
trochemical characterization technique that involves measuring the 
impedance of a target system as a function of the frequency of a given 
sinusoidal waveform. EIS is utilized for the analysis and study of elec
trode kinetics and surface behaviors within the system. This 
non-invasive method is widely employed due to its capability to assess 
electrode dynamics without causing damage to the surface of the target 
system. Fig. 4a illustrates the typical EIS responses of AR-γ1, AP-γ1, and 
pure Li at 25◦C. Table 1 provides the associated fitting parameters. 
Clearly, the values of RSEI for AR-γ1 are considerably lower than those 
for AP-γ1 and pure Li, highlighting the favorable effect of minor Ag 
doping in enhancing interfacial kinetics and reducing the intrinsic 
impedance of pure Li. In addition, as depicted in Fig. 4b, The use of 
AR-γ1 in the symmetric cell results in the lowest polarization, providing 
significant stability over both AP-γ1 and pure Li. Additionally, AR-γ1 
maintains stable voltage profiles for up to 150 hours, whereas the sta
bility of AP-γ1 and pure Li is limited to approximately 35 and 20 hours, 
respectively. This indicates that AR-γ1 is less susceptible to dendrite 
growth compared to AP-γ1 and pure Li. 

Based on the analysis above, it is evident that AR-γ1 possesses 
enhanced thermodynamic stability, improved adsorption energy, and 

superior Li diffusion properties. Additionally, it is noteworthy that AR- 
γ1 demonstrates lower impedance in comparison to AP-γ1 and pure Li, 
followed by AP-γ1. The charge-discharge behavior of AR-γ1 differs from 
that of pure Li. During lithiation, Li atoms are generated on the surface 
of the alloy and diffuse within the foil to form an alloy structure. Simi
larly, during delithiation, Li atoms produced through dealloying can be 
extracted from the foil similar to the discharge period. This behavior 
highlights efficient Li charge-discharge dynamics within the alloy. Due 
to the distinct charge-discharge behavior of AR-γ1 and pure Li, they 
exhibit different Li deposition morphologies. Fig. 5a illustrates the 
process of Li inward-growth plating into the AR-γ1 foil, effectively 
preventing surface deposition and the associated dendrite formation. In 
contrast, surface plating of Li on the Li metal anode leads to dendrite 
formation, posing potential safety concerns. Furthermore, to verify this 
analysis, long-term cycling tests were conducted. Cells employing AR-γ1 
and pure Li as anodes, with LFP as the cathode, were examined at a 
current density of 0.4 mA/cm2, as shown in Fig. 5b. After 300 cycles, the 
AR-γ1 cell exhibits significantly less capacity fading compared to pure 
Li. Specifically, the specific capacity of AR-γ1 fades from 150.3 to 
84.7 mAh/g, whereas that of pure Li decreases from 147.5 to 50.2 mAh/ 
g. The average Coulombic efficiency for both AR-γ1 and pure Li exceeds 
99% over 300 cycles. The extended cycling of the cells further verify that 
AR-γ1 outperforms pure Li. Additionally, cells with AR-γ1 and AP-γ1 as 
anodes were also compared. The testing was performed by applying 
0.1 mA/cm2 for the first two cycles and 0.4 mA/cm2 for the subsequent 
cycles, with the mass loading of cathode active material at 3.0 mg/cm2. 
As shown in Figure S6. the average coulombic efficiencies for AR-γ1 and 
AP-γ1 are 99.92% and 99.01%, respectively. Additionally, the specific 
capacities of AR-γ1 and AP-γ1 are comparable, with AR-γ1 slightly 
exceeding AP-γ1. 

5. Conclusions 

In this study, we employed a combination of DFT calculations and 
experimental analysis to compare the performance of AR-γ1, AP-γ1, and 
pure Li anodes. Firstly, we identified that AR-γ1 exhibits superior ther
modynamic stability compared to AP-γ1 and pure Li. Secondly, we 
investigated the Li adsorption energy and Li diffusion barriers for these 
phases, revealing that AR-γ1 outperforms AP-γ1 and pure Li. Finally, 
through EIS and symmetric cell tests, we unveiled the advantages of AR- 
γ1 as anode. Overall, our findings suggest that, within the γ1 phase, 
selecting the AR-γ1 is essential for balancing high energy density and 
electrochemical performance. This study provides valuable guidance for 
the selection and application of high-energy density phases in other 
alloy systems, offering innovative approaches to enhance the perfor
mance of Li-ion batteries. 
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