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Abstract 

Surface properties of crystals are critical in many fields, including electrochemistry and photoelectronics, the efficient prediction of which 
can expedite the design and optimization of catalysts, batteries, alloys etc. However, we are still far from realizing this vision due to the 
rarity of surface property-related databases, especially for multicomponent compounds, due to the large sample spaces and limited computing 
resources. In this work, we present a surface emphasized multi-task crystal graph convolutional neural network (SEM-CGCNN) to predict 
multiple surface properties simultaneously from crystal structures. The model is evaluated on a dataset of 3526 surface energies and work 
functions of binary magnesium intermetallics obtained through first-principles calculations, and obvious improvements are observed both in 
efficiency and accuracy over the original CGCNN model. By transferring the pre-trained model to the datasets of pure metals and other 
intermetallics, the fine-tuned SEM-CGCNN outperforms learning from scratch and can be further applied to other surface properties and 
materials systems. This study could be a paradigm for the end-to-end mapping of atomic structures to anisotropic surface properties of 
crystals, which provides an efficient framework to understand and screen materials with desired surface characteristics. 
© 2024 Chongqing University. Publishing services provided by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. 
This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
Peer review under responsibility of Chongqing University 
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. Introduction 

Surface properties, including surface energy and work
unction, are crucial in determining materials’ behavior in
arious applications, particularly in electrochemistry and pho-
oelectronics [ 1 , 2 ]. Surface energy, governing the stability of
ifferent crystal facets, is important in understanding the sur-
ace structure/reconstruction, the crystal’s equilibrium shape,
nd the adsorption, catalysis, or corrosion reactions [ 3 ]. Simi-
arly, the work function, which represents the energy required
o remove an electron from the material’s surface, is a critical
actor for charge injection, electron transfer, and photovoltaic
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erformance [ 4 ]. Surface energy and work function, as two
undamental and facet-dependent properties, are essential for
nderstanding phenomena like catalytic activity, surface hy-
rophobicity, crystal growth, and electronic junction behavior
 5–8 ], which can be effectively obtained from density func-
ional theory (DFT) calculations on surface slabs with vary-
ng crystal orientations and terminations. However, in contrast
ith the rapid increase in available computational data struc-

ured in open-source materials databases, surface properties
ike the work function are extremely rare as each bulk material
ypically has dozens of distinct low-index crystalline surfaces
nd terminations [ 9 ]. To the best of our knowledge, while the
argest computational surface catalysis database, OC20, pro-
ides extensive adsorption data, it does not include work func-
ion or surface energy information [ 10 ]. The Materials Project
atabase contains surface energy and work function data for
bout 100 elemental crystals [ 11 ], while the JARVIS-DFT
r B.V. on behalf of KeAi Communications Co. Ltd. This is an open access 
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atabase and the C2DB database only have work functions
alculated for 2D materials [ 12 , 13 ]. 

When it comes to Mg alloys, the lightest structural mate-
ials with high specific strengths [ 14–16 ] and excellent bio-
ompatibilities [ 17 , 18 ], the surface properties of solid solution
nd intermetallics are strongly correlated with their corrosion
ehavior and mechanical performance [ 19–21 ]. For corrosion
rotection, as the alloying effects on corrosion behavior con-
inue to be extensively studied experimentally and theoreti-
ally to enhance its intrinsic corrosion resistance [ 19 , 22–25 ],
etailed information regarding surface features is critical. In
his context, surface energy representing the stability of sur-
aces is closely related to the corrosion rate by affecting both
nodic and cathodic reaction. Specifically, a more compre-
ensive evaluation of some surface properties (e.g. hydrogen
dsorption energy [ 24 ], work function [ 26 ], vacancy forma-
ion energy [ 27 ]) can be achieved at nanometric scale based
n the Wulff shape constructed from surface energies. Work
unction describes the degree of difficulty for charge transfer
n anodic dissolution [ 28 ], where a high work function cor-
esponds to better corrosion resistance by increasing the cor-
osion potential [ 29 , 30 ]. However, despite the importance of
hese surface properties, relevant datasets of Mg intermetallics
re particularly scarce due to the large sample spaces and lim-
ted computing resources, with the largest one contains 150
ieces of the work function of Mg-based solid solutions and
g-containing intermetallics [ 31 ]. 
Over the past few years, machine learning (ML) has es-

ablished itself as a potent tool within the realm of materi-
ls science [ 32–36 ], which is particularly effective in aiding
he screening and designing processes within extensive mate-
ial systems [ 34–36 ]. For example, it is important to improve
he intrinsic corrosion resistance of Mg alloys by suppress-
ng the dissolution and hydrogen evolution reactions [ 16 , 37 ],
nd the latest progress has successfully demonstrated that
achine learning can serve as an effective tool for screen-

ng corrosion-resistant Mg alloys with proper solid solution
nd intermetallic compound phases [ 1 , 24 , 31 ]. Furthermore,
onsidering the necessity of featurizing slabs for predicting
urface properties, recent studies have focused on predict-
ng surface properties such as electron affinity, ionization en-
rgy, surface energy, and work function within the framework
f compounds in their respective fields [ 9 , 36 , 38 ]. Neverthe-
ess, these studies primarily focus on individual surface prop-
rty predictions, and rarely intersect with Mg intermetallic
ystems. 

Among the various ML techniques, data-driven modeling
nables inexpensive and accurate predictions of material prop-
rties, facilitating rapid screening of large material spaces to
dentify potential candidates with desired properties [ 39–41 ].
or instance, graph convolutional network (GCN) model [ 42 ]
utomatically selects features, facilitating end-to-end mapping
f atomic structures to target attributes. Base on GCN, Xie
nd Grossman [ 43 ] have developed crystal graph convolu-
ional neural network (CGCNN) by treating atoms as graph
odes and chemical bonds as edges. Recently, some variants
ave been developed by including bond angles [ 44 ], crystallo-
Please cite this article as: G. Shi, Y. Wang, K. Yang et al., A surface emphasiz
study of magnesium intermetallics, Journal of Magnesium and Alloys, https:// do
raphic information [ 45 ], global state [ 46 ], or bond type [ 47 ]
n the model to improve predictive accuracy. Besides, multi-
ask learning (MTL) has been combined with GCN models to
trengthen the transfer learning (TL) property along with the
bility to inject physics knowledge and reduce the computa-
ional effort [ 48–50 ]. Nevertheless, to the best of our knowl-
dge, such models haven’t been used for surface property
redictions. 

In this work, we present a surface emphasized multi-task
GCNN, SEM-CGCNN, to predict surface energies and work

unctions simultaneously and demonstrate its predictive ability
or binary intermetallics of magnesium alloys. In this model,
radNorm [ 51 ] is used to balance the gradient loss of each

ask, and an atomic feature for surface/internal atoms is em-
edded to emphasize the contribution of surface atoms to sur-
ace properties based on empirical physical cognition. We
rain SEM-CGCNN on a DFT dataset of surface energies
nd work functions for 3526 surfaces of binary Mg inter-
etallics, and demonstrate its interpretability by extracting the

lemental embedding vectors. Finally, the pre-trained model
s utilized for parameter initialization in transfer learning to
emonstrate its generalization ability in open-source surface
roperty datasets. 

. Computational methods 

.1. Generation of the training dataset 

The DFT simulations of crystal unit cell and surface slab
odels were performed with the projector augmented wave

PAW) [ 52 ] method as implemented in the Vienna Ab Initio
imulation Package (VASP) [ 53 ]. The exchange-correlation
unctional of Perdew-Burke-Ernzerhof (PBE) generalized gra-
ient approximation (GGA) was applied [ 54 ]. The cut-off en-
rgy of plane wave was set at 480 eV, and k-point mesh was
utomatically generated by pymatgen codes [ 11 ]. The conver-
ence criteria of energy and force were set to 10−4 eV and
.02 eV/Å, respectively. All slab models are symmetrical and
hicker than 10 Å. The atoms 3Å away from the surface were
xed during the structural optimization, and a vacuum layer
f 15 Å was employed along Z direction. The work func-
ion was computed as the difference between Fermi energy
nd the local vacuum level away from the surface. The cal-
ulation method of surface energy and work function can be
ound in the Supplementary Material. 

With the high-throughput workflow demonstrated in our
revious work [ 55 ], 188 binary Mg intermetallics from Ma-
erials Project [ 11 ], OQMD [ 56 ] and AFLOW [ 57 ] were
creened out as listed in Table S1. All the low-index sur-
aces (Miller indices up to (111)) with different terminations
ere considered and 3574 surface energies and work func-

ions were obtained. After filtering out samples with negative
urface energy and significant surface reconstructions during
elaxation processes, the dataset contains 3526 surface ener-
ies and work functions, and their distributions are shown in
ig. 1 a and Fig. S1. 
ed multi-task learning framework for surface property predictions: A case 
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Fig. 1. Architecture of SEM-CGCNN: (a) joint distribution density of DFT calculated surface energy and work function in the dataset of Mg intermetallics; 
(b) representation of feature embedding for surface/internal atoms, where ˜ vi denotes surface embedded atom feature; (c) SEM-CGCNN network architecture 
for DFT calculated surface energy and work function. Black arrows represent forward pass, green arrows represent backward pass and orange lines represent 
balancing ωSE and ωWF with GradNorm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.) 
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.2. Architecture of SEM-CGCNN 

SEM-CGCNN is a CGCNN-based model with multiple
eads in fully connected (FC) layers for MTL to achieve
etter generalization performance, with an extra atom fea-
ure embedded for surface/internal atoms to emphasize the
ontribution of surface atoms. SEM-CGCNN inputs crystal
tructure and converts it into a graph, and outputs multiple
urface properties (surface energy and work function in this
ork). 

.2.1. Crystal graph convolutional neural network (CGCNN) 
As one of the earliest and most established GCN models

or predicting crystal properties, CGCNN has been widely
alidated in its performance and scalability, and hence cho-
en as our benchmark model. The work by Xie and Grossman
 43 ] developed a generalized crystal graph convolutional net-
ork to represent the crystals and to predict their properties
ith accuracy of ab initio physics models. It transforms crys-

al structure into an undirected multigraph G = ( V , U ), re-
arding atoms as graph nodes V and chemical bonds as edges
 . In this work, each node i is represented by one feature vec-

or vi and each edge ( i , j )k is represented by one feature vector
(i, j ) k for k th bond connecting atom i and atom j . The orig-
nal graph is constructed by embedded atom feature vi along
ith bond feature u (i, j ) k . In convolutional layers, vi is itera-

ively updated by convolving with surrounding bonds u(i, j ) k 
hrough a nonlinear graph convolutional function, which can
e expressed in a simple way: 
(t+1) 
i = Conv (v(t ) 

i , v(t ) 
j , u(i, j) k ) , (i, j) k ∈ G, (1)

here t denotes the iteration number of the convolutional
unction. Typically, the form of convolutional function in
q. (1) has the largest impact on prediction performance with
Please cite this article as: G. Shi, Y. Wang, K. Yang et al., A surface emphasiz
study of magnesium intermetallics, Journal of Magnesium and Alloys, https:// do
he information of symmetries and invariances captured [ 58 ].
o differentiate the interactions between neighbors, Xie and
rossman define z(t ) 

(i, j ) k = v(t ) 
i � v(t ) 

j � u(i, j ) k and perform con-
olution by: 

(t+1) 
i = v(t ) 

i + 

∑ 

j,k 

σ
(

z(t ) 
(i, j) k W

(t ) 
f + b(t ) 

f 

)
� sp

(
z(t ) 
(i, j) k W

(t ) 
s + b(t ) 

s 

)
,

(2) 

here � denotes concatenation and � denotes element-wise
ultiplication. σ denotes a sigmoid function and sp denotes
 softplus function. As expected, σ ( · ) functions as factors
o differentiate interactions between neighbors while sp ( · )
unctions as local environment of central atoms, and W (t ) 

f ,
(t ) 

s , b(t ) 
f , b(t ) 

s are the corresponding weight matrices and bi-
ses. After convolutions, the network learns the feature vector
i for each atom by iteratively incorporating information from
ts surrounding environment. These vectors are then average
ooled to obtain an overall vector representation vc for the
rystal: 

c = Pool (v0 , v1 , ..., vN ) . (3)

The pooling layer ensures permutational invariance with
espect to atom indexing and size invariance with respect to
he choice of unit cell. vc is then regarded as an input of
C layer to capture the complex mapping between crystal
tructure and a target property of p : 

ˆ p = AL ( sp(AL−1 (sp(...sp(A1 (vc )) ... )))) , (4) 

here AL (with L = 1, 2, …, L) are affine mappings. Us-
ng backpropagation and optimizers like stochastic gradient
escent (SGD) or adaptive moment estimation (Adam), we
an solve the following optimization problem by iteratively
ed multi-task learning framework for surface property predictions: A case 
i.org/ 10.1016/ j.jma.2024.12.005 
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pdating the weights W with DFT calculated data: 

in 

W 

Lp := 1 

n 

∑ n 

i=1 

(
yp,i − ˆ yp,i 

)2 
, (5) 

here Lp is the loss function of mean square error calculated
rom prediction values ˆ yp,i and sample values yp,i . In our MTL
odels, Lp will be further used to compose the total loss

unction later. 

.2.2. Feature embedding for surface atoms 
Surface atomic structures are critical in determining the

urface properties, which could vary significantly even for
he same material with various Miller indices and termina-
ions. We exhibited the surface effect on some slabs from
wo perspectives in Fig. S2. From deep learning, the self-
ttention mechanism [ 36 ] is applied and shows that the atoms
n the surface tend to have higher contribution to the pre-
iction result. From physical characteristics, the charge den-
ity is obviously different between surface and interior of
labs, which is a reflection of Friedel oscillations [ 59 ]. There-
ore, in expectation of highlighting the contribution of surface
toms, the original atom features vi are concatenated with
ectors v∗

i , which labels the outermost atoms on surface, as
hown in Fig. 1 b, where the operation � denotes concatena-
ion. The modified atom features were further substituted into
q. (1) after being embedded. The outermost atoms were de-
ned as those within the threshold depth of surface, and that

hreshold depth was demonstrated as atreated as a hyperpa-
ameter. Based on our test results, the model performs best
hen it takes 2Å as shown in Fig. S3. 

.2.3. Multi-task learning (MTL) 
The fundamental motivation for multi-task learning is to

chieve better generalization performance [ 48 ], and there are
wo main architectures for MTL in the deep learning context
hard parameter sharing and soft parameter sharing). Here we
se hard parameter sharing, which is the most widely used
TL approach and suitable for handling tasks with strong

elevance. It has shared convolutional layers across all tasks
nd task-specific output layers for each task, as shown in
ig. 1 c. In MTL, each task has an individual loss function
enerated from predicted values and the total loss function for
he network is the weighted linear sum of individual losses
f each task. A common setup for the total loss function of
he multi-task problem is [ 48 , 50 ]: 

 (t ) =
∑ 

p∈ p 
ωp (t )Lp (t ) , (6)

here L is the total loss of the network, Lp are individual
osses from each of the task-specific layers and ωp are the
eights for the individual losses. The values of the ωp in
q. (5) are determined by GradNorm (details in next subsec-

ion) in SEM-CGCNN. The multiple target quantities in MTL
re interpreted as mutual inductive biases [ 50 ] because the er-
or of a single quantity acts as a regularizer with respect to
he loss functions of other quantities. 
Please cite this article as: G. Shi, Y. Wang, K. Yang et al., A surface emphasiz
study of magnesium intermetallics, Journal of Magnesium and Alloys, https:// do
.2.4. Gradient normalization 

For a multitask loss function Eq. (2) , the aims of Grad-
orm algorithm are two-fold [ 51 ]: (1) to place gradient norms

or different tasks on a common scale, enabling us to reason
bout their relative magnitudes, and (2) to dynamically adjust
radient norms to ensure that different tasks train at similar
ates. Specifically, 

grad (t; wi (t )) =
∑ 

i 

∣∣∣G(i) 
W 

(t ) − G W 

(t ) × [ ri (t ) ] 
α
∣∣∣
1 
, (7) 

here G(i) 
W 

(t ) denotes the L2 norm of the gradient of the last
hared layer with respect to the weights W , ḠW 

(t ) is the av-
rage gradient norm across all tasks at training step t, ri ( t ) is
he relative inverse learning rate of task i , and α is a hyperpa-
ameter which determines the strength of balancing tasks (a
igh α value penalizes tasks with rapid loss reduction, instead
avoring those with slower loss decreases). GradNorm Lgrad 

resents the gap between actual and target gradient norms
n all tasks, and it can be differentiated with respect to wi ,
hich gives a weight of corresponding task directly. Then the

omputed ∇wi Lgrad is applied to updated each wi iteratively
 Fig. 1 c). 

.3. Model construction and training 

Pytorch [ 60 ] is utilized for implementation of our model,
erving as a robust neural network library and a perfor-
ance portability layer for running on multiple hardware ar-

hitectures with various optimization algorithms. Thus SEM-
GCNN can be run on CPUs and GPUs, from laptops to su-
ercomputers. In this work, the crystal graphs are constructed
y searching the nearest 12 neighbors within a cutoff radius
f 12 Å, and Adam optimizer is utilized to update parameters
n the training process with an initial learning rate of 0.001,
hich is reduced by 90 % after 100 epochs for tighter conver-
ence. The embedding dimension is set to 64, and the number
f both convolutional layers and hidden layers are set to 3 by
efault. To choose the best model, we apply a train-validation
cheme to optimize the prediction. All datasets containing un-
elaxed structures and their corresponding properties are ran-
omly divided into 60 % training set, 20 % validation set,
nd 20 % testing set, and the model performs best on the
alidation set is selected for final testing, which reduce the
ikelihood of overfitting. 

The optimal hyperparameters are obtained through the
ree-structured Parzen Estimator (TPE)-based Bayesian op-

imization method [ 61 ] in a train-validation process, imple-
ented with the open-source Python library hyperopt [ 62 ].
his approach offers several advantages, particularly in ef-
ciently searching high-dimensional and complex hyperpa-
ameter spaces. We set a maximum of 200 trails (redundant
earches are avoided) for each model to balance computa-
ional resources with the need for thorough optimization. The
earch space used for the optimization process is detailed in
able S2. With the optimal hyperparameters, a 5-fold cross
alidation is also conducted to further validate the stability
nd generalization capability of the models. 
ed multi-task learning framework for surface property predictions: A case 
i.org/ 10.1016/ j.jma.2024.12.005 
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Fig. 2. 2D histogram representing the predicted surface energy and work function against DFT calculations for facets of binary Mg intermetallics, using the 
model of (a)(b) simple CGCNN and (c)(d) SEM-CGCNN. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 

 

t  

t  

i  

a  

(  

t  

m  

w  

t  

u  

w  

a  

t

3

3

 

l  

m  

f  

t  

w  

t  

t  

t  

c  

a  

a  

f  

C  

a  

a  

h  

c  

t  

a  

d  

s  

m
 

a  
The pre-trained model on the dataset of binary Mg in-
ermetallics is further used in transfer learning to improve
he performance of models on the datasets of pure metals
n the Materials Virtual Lab [ 63 ] (containing surface energy
nd work function) and intermetallics by Palizhati et al. [ 38 ]
surface energy only). We implement scratch (SC) models and
ransfer learning (TL) models respectively. For SC models, the
odels are trained directly on the target dataset from scratch
ithout imparting any prior knowledge from the source data

o the model. For TL models, we perform fine-tuning which
ses the weights from the pre-trained model as the initial
eights for the network (which shares the same architecture

s that used during the training of the pre-trained model) and
hese initial weights are then refined using a smaller dataset. 

. Results and discussion 

.1. Model accuracy and reliability 

In Table 1 , the performance of CGCNN based single-task
earning (STL) model and modified multi-task learning (MTL)

odels are compared in predicting surface energy and work
Please cite this article as: G. Shi, Y. Wang, K. Yang et al., A surface emphasiz
study of magnesium intermetallics, Journal of Magnesium and Alloys, https:// do
unction of binary Mg intermetallics, individually or simul-
aneously. The hyperparameters are shared in these models
ith default values listed in Table S3. We compute not only

he accuracy (MAE and R2 ) of each model, but also the to-
al loss optimized (for STL, the individual losses of different
asks are added up as a total loss). This simple metric gives a
omprehensive quantification for different models. GradNorm
lgorithm and surface embedding are evaluated to be helpful,
nd the model of SEM-CGCNN combining them together per-
orms the best. The results show that the multi-headed SEM-
GCNN model effectively leverages the strong correlations
mong physical properties to mitigate prediction uncertainties,
nd the computational time is comparable to that of a single-
eaded CGCNN model. This trend is basically the same after
onducting a Bayesian optimalization on hyperparameters and
he following 5-fold cross validation , as shown in Table S3
nd S4. Notably, for work functions, which have higher pre-
iction errors compared to surface energies, the MTL models
ignificantly reduce the prediction errors compared to the STL
odel. 
The parity plots for the predictions by simple CGCNN

gainst DFT calculated surface energy and work function for
ed multi-task learning framework for surface property predictions: A case 
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Fig. 3. Distribution analysis of samples and prediction errors for chemical elements of binary Mg intermetallics: (a)(b) box plots of the surface energy and 
work function for various elements, with outliers hidden for clarity; (c) distribution of samples sizes and prediction errors for various elements. The mean 
absolute percent error (MAPE) is used to evaluate prediction error for each chemical element, and it’s averaged from surface energy and work function. The 
blue and dark blue bars represent metals and semiconductors, respectively. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Table 1 
The predictive accuracy of CGCNN based models on test set. 

Models Model description Surface energy (eV/Å2 ) Work function (eV) Total loss 

MAE R2 MAE R2 

STL Surface energy 0.0055 0.9056 – – 0.1727 
Work function – – 0.1253 0.8578 

MTL Simple 0.0059 0.8807 0.1261 0.8843 0.1836 
GradNorm 0.0053 0.9081 0.1288 0.8802 0.1708 
Surface embedded 0.0056 0.8986 0.1211 0.8843 0.1776 
SEM-CGCNN 0.0053 0.9348 0.1180 0.9072 0.1570 

STL, single-task learning; MTL, multi-task learning. 

Please cite this article as: G. Shi, Y. Wang, K. Yang et al., A surface emphasized multi-task learning framework for surface property predictions: A case 
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Fig. 4. Pearson correlations between elemental embedding vectors of 50 elements in 188 binary Mg intermetallics, arranged in order of increasing Mendeleev 
number [ 65 ] for easier visualization of trends. 
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raining data (gray dots) and test data (orange and green dots)
re shown in Fig. 2 a,b respectively. The majority of data
oints cluster near the diagonal lines, which indicates that
he surface energy and work function predicted by CGCNN
onsiderably align with the corresponding theoretical values
rom first-principles calculations. Nevertheless, it is notable
hat some points exhibit horizontal distribution, which are cor-
esponding to different facets of a single compound (primar-
ly MgB7 , MgB13 , MgAu3 ). This observation suggests that the
riginal CGCNN model fails to effectively differentiate facets
ith varying orientations. However, this limitation is appar-

ntly mitigated in the SEM-CGCNN model, which leverage
he strong correlations among physical properties to reduce
redictions uncertainties, as evidenced by the parity plots de-
icted in Fig. 2 c, d. From the perspective of data distribution,
he data points for surface energy are densely clustered near
ero, contrasting with the more uniformly distributed work
unction data. And as anticipated, this non-uniform concen-
ration yields more accurate predictions in regions abundant
ith data, resulting in higher accuracy for surface energy pre-
ictions. However, the lack of samples exhibiting high surface
Please cite this article as: G. Shi, Y. Wang, K. Yang et al., A surface emphasiz
study of magnesium intermetallics, Journal of Magnesium and Alloys, https:// do
nergy may potentially hinder the model’s generalization abil-
ty. 

To better analyze the model performance, and make clear
he limitations of our model, the distribution of all binary

g intermetallics in our dataset and prediction errors for
hemical elements involved are shown in Fig. 3 . Among all
lements evaluated, the predictive errors of their respective
g intermetallics indicate that for 46 elements, the prediction

rrors remain below 15 %, with 40 elements exhibiting pre-
iction errors below 10 %. It’s noteworthy that the elements
ith prediction errors higher than 10 % are in or near the

egion of metalloids (excepting Pt) with weaker metallicity,
nd it can be seen more clearly in Fig. S4. The exception of
t could be attributed to its wider sample distribution range
ith smaller sample size. The metallicity for each chemical

lement is also shown in Fig. 3 . It’s evident that the Mg
ompounds associated with Se, Te, and Sb (namely MgSe2 ,
gTe2 , Mg3 Sb2 ), which exhibit the highest prediction errors,

re semiconductors. Generally, those elements with high
rediction errors usually have smaller sample sizes and wider
ample distribution range, and most of them are semicon-
ed multi-task learning framework for surface property predictions: A case 
i.org/ 10.1016/ j.jma.2024.12.005 
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Fig. 5. Transfer learning performance of SEM-CGCNN: (a)(b)(c) learning curve for predicting surface energy (work function) in datasets of 801 pure metals 
by Materials Virtual Lab[ 63 ] and 3033 intermetallics by Palizhati et al. [ 38 ] with different training data sizes on a fixed test set; (d)(e)(f) prediction error 
analysis of scratch (SC) and transfer learning (TL) model in two datasets, each with a data size of only 20 % allocated for training. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ucting intermetallics, which are minority among all samples
nd significantly deviate from metals in terms of their coor-
ination numbers and binding energy. This result aligns with
revious work by Palizhati et al. [ 38 ], who demonstrated that
GCNN may perform inadequately for covalent materials. 

.2. Interpretability and transfer learning 

Compared to the prevailing approach within the materi-
ls ML community of constructing single-purpose models for
ach quantity, the advantage of deep learning models lies in
heir typically superior generalization capability. This stems
rom their ability to automatically extract features from raw
ata, thereby acquiring more comprehensive information and
igher-level feature representations, provided that the data
olume requirements are met. One of the primary objectives
f MTL is also to enhance feature interpretability and gen-
ralization capability, which becomes particularly crucial in
he context of relatively small datasets available in materials
cience. In applications of chemistry and materials science,
 desirable feature should possess interpretability of known
hemical intuition [ 46 , 64 ]. To this end, we extracted elemental
mbedding vectors of element X in Mg-X intermetallics from
he pre-trained model and demonstrated their Pearson corre-
ations, as shown in Fig. 4 . In fact, after convolutional layers,
he node features which are atom features of X formerly, have
ot only contained information about the X atoms, but also
nformation about the Mg atoms within the receptive field.
bviously, this would diminish the discriminability of node

eatures for different elements. Nevertheless, the correlations
etween the elemental embeddings still correctly reproduce
Please cite this article as: G. Shi, Y. Wang, K. Yang et al., A surface emphasiz
study of magnesium intermetallics, Journal of Magnesium and Alloys, https:// do
he trends in the periodic table of elements, and it also re-
ects the phenomenon of weight condensation throughout the
onvolutional layers especially for rare earth elements (Fig.
5), which is a positive indication of the captured informa-

ion on symmetry. It is noteworthy that the extracted trends
aithfully replicate well-known “exceptions” in the periodic
rrangement of atoms. The observation that Yb does not con-
orm to the lanthanoids but rather aligns closer with alka-
ine earth elements is consistent with chemical intuition and
atches well with the structure maps by Pettifor [ 65 ]. 
To check the robustness of the proposed framework, we

uilt a pre-trained model using SEM-CGCNN on the dataset
f binary Mg intermetallics, by using both surface energy
nd work function as the source materials property. This pre-
rained model was then used to perform transfer learning on
wo datasets [ 63 , 38 ]. The first one contains 801 facets of 75
ure metals with the surface energy and work function, while
he second one contains 3033 facets of 367 intermetallics
19 unitary, 260 binary and 88 ternary) with the surface en-
rgy. We performed a training size-based analysis to examine
he performance difference between scratch (SC) and transfer
earning (TL) models as shown in Fig. 5 . The validation and
est set are both fixed to 20 % of the total data size, with the
emaining data proportionally allocated for training. Fig. 5 a-
 show that TL models always outperform SC models for
ll the training data sizes in surface energy (work function)
rediction. The convergence of the model’s performance is
ignificantly better in the dataset of pure metals, and it’s evi-
ent that there is a lack of samples for the model to featurize
he large structural differences in the dataset of intermetallics.
ig. 5 d-f compare the prediction results of two models when
ed multi-task learning framework for surface property predictions: A case 
i.org/ 10.1016/ j.jma.2024.12.005 
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Fig. 6. Prediction results of Wulff shape weighted surface properties: (a) comparison of Wulff structures constructed using DFT calculated and SEM-CGCNN 

predicted surface energy. The source data of Pt, MgCo2 and CuFePt2 are from Materials Virtual Lab [ 63 ], this work and Palizhati et al. [ 38 ], with facets up 
to a maximum absolute Miller index of 3, 1, 2 respectively. The facets with area ratio larger than 1 % are labeled, and darker shades correspond to relatively 
higher surface energy. γ̄ and �̄ are weighted surface energy and work function based on Wulff shape respectively. The values above are predicted, while 
those within parentheses below are calculated via DFT; (b) scatter plot showing the relationship between dissolution equilibrium potential and Wulff weighted 
work function for pure metals and Mg-based binary intermetallics. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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rained with a data size of 20 % (equivalent to 12 % of the
hole dataset), providing snapshots under small dataset con-
itions. Additionally, for the dataset of intermetallics, the best
AE of 0.0073 eV/Å from TL model is comparable with the

riginal work [ 38 ], despite using fewer than half of its pa-
ameters in our work. 

Further we evaluated the prediction uncertainty of Wulff
onstruction [ 66 ] using the leave-one-out method, which was
esigned to predict new intermetallic combinations or new
Please cite this article as: G. Shi, Y. Wang, K. Yang et al., A surface emphasiz
study of magnesium intermetallics, Journal of Magnesium and Alloys, https:// do
ure metals not seen both in training set and validation set.
s shown in Fig. 6 a, the Wulff structures were constructed for
t (mp-126), MgCo2 (mp-864931), and CuFePt2 (mp-3702)
y DFT calculated and SEM-CGCNN predicted surface en-
rgy from three datasets. The predicted results closely resem-
le the computationally obtained Wulff structures. The Wulff
eighted surface energies and work functions of each crystal

re also listed for SEM-CGCNN’s predictions and DFT re-
ults. With the facet-dependent error analysis listed in Table
ed multi-task learning framework for surface property predictions: A case 
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5, S6 and S7, we noticed that the Wulff weighted surface en-
rgies and work functions exhibit lower errors than the MAE
f surface energies and work functions across all surfaces,
hich can be interpreted as lower-index surfaces occupying a

arger area ratio in Wulff structures while also exhibiting rel-
tively smaller prediction errors. Under this premise, it is be-
ieved that the model can provide reasonably accurate predic-
ions for these two properties in practical applications, given
hat the standard errors for DFT estimated facet-dependent
urface energy and work function for elemental crystals have
een reported as up to 0.0168 eV/Å [ 63 ] and 0.246 eV [ 26 ],
espectively. 

Furthermore, we predict the Wulff shape weighted work
unction of 246 Mg-based binary intermetallics using the
forementioned method and compare them with those of 56
ure metals, as shown in Fig. 6 b. It is important to note that
hile the Wulff shape from surface energies provides use-

ul estimates of surface properties at the nanometric scale,
ts application to macroscopic properties should be done with
aution (the morphology of crystal is also affected by surface
efects/adsorptions, growth condictions and interface energy)
 66 ]. For polycrystalline materials, however, such work func-
ion predictions have been shown to be relatively reliable [ 26 ].
he dissolution equilibrium potentials are also calculated to
valuate their stability in neutral solutions, with the concen-
ration of dissolved ions set to 10−6 mol/L (details can be
ound in the Supplementary Material). From the perspective
f corrosion protection, second phases with equilibrium po-
ential slightly higher than that of Mg are thermodynamically
esirable [ 67 ], and semiconductors like Mg2 Ge and Mg3 As2 

re known as cathodic “poisons” which can form a Schot-
ky barrier with magnesium matrix [ 68 , 69 ]. From a photo-
atalytic perspective, certain Mg-based intermetallic semicon-
uctors with both high equilibrium potentials and work func-
ions (e.g., MgS2 , MgAs4 , and MgSe2 ) are potential candi-
ates for constructing heterojunctions with noble metals [ 70 ].
dditionally, intermetallics with low work functions (e.g.,
aMg, Ba6 Mg23 , Yb2 Mg, Yb3 Mg) have potential applications

n electron emission devices [ 71 ], high-brightness photocath-
des [ 72 ], and thermionic energy converters [ 73 ]. 

Though SEM-CGCNN has offered a valid implementation
or our multi-task learning framework in surface property pre-
ictions and can be readily adapted to open-source surface
roperty database to achieve a fine-tuned model for specific
aterials systems, several challenges still remain unresolved

n this study, ranging from DFT calculation to model pre-
iction, highlighting the need for further investigation and
nnovation. Firstly, the DFT calculated surface energies have
nherent errors brought by surface reconstruction, finite size
ffect and various approximations. Secondly, since the predic-
ions are based on the unrelaxed slabs, the effect of relaxation
n surface properties might be underestimated. Recent works
 9 ] attempted to calculate and predict surface energy and work
unction under non-relaxation conditions, but primarily for
ough screening purposes. A modified bond-breaking model
 74 ] shows promise in mitigating this issue by refining unre-
axed surface structures based on Hook’s law, leading to more
Please cite this article as: G. Shi, Y. Wang, K. Yang et al., A surface emphasiz
study of magnesium intermetallics, Journal of Magnesium and Alloys, https:// do
ccurate representations of the atomic arrangements. Further-
ore, current GCN models still face the challenges in ade-

uately capturing underlying patterns and key influential fac-
ors in graph data with complex structures and features, and
heir generalization ability remains limited in diverse sample
pace. To further improve the predictive performance, future
ork could focus on better addressing the influence of surface

elaxation and integrating additional factors. Furthermore, the
exibility of our MTL framework allows for alignment with
volving state-of-the-art GCN models, ensuring continued ac-
uracy and efficiency. 

. Conclusions 

In this study, we introduce a multi-task learning framework
or predicting surface properties from crystal structure graphs,
rained on 3526 binary Mg intermetallic surface structures es-
ecially for surface energies and work functions. This model
emonstrates advantages in efficiency, flexibility, and applica-
ility, making it a valuable tool for surface-related research.
he main conclusions are as follows: 

1) The SEM-CGCNN model, with its flexibility in multi-task
learning, demonstrates higher efficiency than single-task
CGCNN models and conventional electronic structure cal-
culations, while effectively leveraging correlations among
surface properties to reduce prediction uncertainties. 

2) The model has demonstrated its generalization ability in
predicting facet-dependent surface energies and work func-
tions for out-of-sample crystals, underscoring its potential
for applications in surface property analysis. 

3) The framework provides a powerful tool for estimating
surface properties as a surrogate for theoretical and exper-
imental studies in electrochemistry, photoelectronics, and
interface engineering. 
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