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Abstract—In this paper, we present federated analytics, a new
distributed computing paradigm for data analytics applications
with privacy concerns. With the advances of sensing, commu-
nication, and edge computing technologies, data are massively
generated, transmitted and analyzed in an edge-cloud computing
environment. In many applications, the edge devices and the
data generated in the edge belong to heterogeneous owners. The
data privacy and confidentiality have become increasing concerns
to these owners. The current edge-cloud computing paradigm
for data analytics, where data are sent to a central server for
analytics, can no longer match the application requirements.
Federated analytics is a newly proposed computing paradigm
where raw data are kept local with local analytics and only the
insights generated from local analytics are sent to a server for
result aggregation. Federated analytics differs from the recent
federated learning paradigm in the sense that federated learning
emphasizes on collaborative model training, whereas federated
analytics emphasizes on drawing conclusions from data. In this
paper, we first clarify what federated analytics is and its position
in the research literature. We then present why we need federated
analytics, i.e., the motivation and application case studies. Finally,
we discuss the opportunities and challenges of federated analytics.

I. INTRODUCTION

Data have become important assets. In 2017, Economist
claimed that “The world’s most valuable resource is no longer
oil, but data." Data analytics is the computing task that draws
conclusions from data. To increase the dimension, quantity
and coverage of data, data analytics are commonly performed
on the data contributed from multiple parties nowadays. In
another dimension, there is also increasing awareness on
privacy issues. Privacy regulations have been established and
strengthened. In 2018, the General Data Protection Regu-
lation (GDPR) were introduced. As such, the conventional
collaborative data analytics paradigm where data are sent to a
centralized server for analytics is no longer viable.

In this paper, we present federated analytics, a new dis-
tributed computing paradigm for data analytics applications
with privacy concerns. In federated analytics, data are kept
local. Local data analytics computing is performed and only
the derived insights will be sent out to a coordination server
for aggregation. Consequently, privacy can be protected.
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The federated analytics paradigm differs from the recent
federated learning paradigm [|1] in the sense that federated
learning is a distributed computing paradigm where the com-
puting task is model training for a machine learning model,
and in particular, a deep learning model. Federated analytics
can be considered from a generalized perspective and a spe-
cialized perspective. From a generalized perspective, federated
analytics include all computing tasks that draw conclusions
from data, and thus include federated learning. From a spe-
cialized perspective, federated analytics specifically refers to
the model inference phase of machine learning, and thus is
the sequel of federated learning. For example, a federated
video analytics architecture [2] assumes the machine learning
model has been established and the participating peer devices
collaboratively perform model inference.

The term federated analytics was first proposed by Google
in May 2020 [3] for its Gboard application. Gboard is a
keyboard app for smartphones providing Al features such as
next word prediction, keyboard search suggestion, etc. With
privacy concerns, Gboard trains deep learning models through
federated learning. To improve the trained models, they should
be evaluated periodically, which again needs to use the user
data. Gboard leverages federated analytics to measure the
overall quality of the trained deep learning models.

With the increase in collaborative data analytics applications
and the increase in privacy concerns, it is foreseeable that there
will be great demands on federated analytics. Unfortunately,
there is a lack of clarification on federated analytics, its
position in the research literature, possible case studies, and
opportunities and challenges.

This paper fills in this gap. We organize this paper as fol-
lows. In Section [} we first discuss what is federated analytics.
We present a definition of federated analytics and a taxonomy
of federated analytics. There are related work summarizing
the topics of distributed intelligence, edge computing, collab-
orative intelligence, federated learning, etc. We will clarify
their differences from us in the taxonomy. In Section we
discuss why we need federated analytics. We discuss in details
the demands from applications and the technology readiness.
These are the two forces to pull and push the development
of federated analytics. We further present two case studies,
Google Gboard and video analytics. In Section we discuss
the opportunities and challenges in federated analytics. We
study the architecture designs, privacy management, resource
management, analytics design and optimization, and business
models in federated analytics. To the best of our knowledge,
we are the first to provide a comprehensive overview on
federated analytics, its opportunities and challenges.



II. WHAT 1S FEDERATED ANALYTICS

In [3], Google called federated anaylytics as “Collaborative
data science without data collection”. More academically,
federated analytics is a collaborative computing paradigm
that performs data analytics computing tasks (i.e., to draw
conclusions from data) across multiple decentalized devices
where the raw data should be kept local.

Federated analytics can be seen as a branch of the dis-
tributed computing paradigm. There are many distributed
computing paradigms, such as collaborating computing, dis-
tributed intelligence, coordinated intelligence, federated learn-
ing, collaborative analytics, to name but a few. We classify
these from the perspectives of the collaboration model and
the computing model. The collaboration model refers to the
relationship of the distributed nodes. The computing model
refers to the computing task undertaken by the system. We
show a taxonomy in Fig. [T}

From the perspective of collaboration model, we further
classify it into three sub-categories: the distributed, collab-
orative and federated models. A collaborative collaboration
model is a special distributed collaboration model since a
distributed collaboration model does not require active col-
laboration. For example, a divide and conquer computing task
falls into a distributed collaboration model, not a collaborative
collaboration model. The federated collaboration model is a
special collaborative collaboration model since the federated
systems emphasize multiple ownership among nodes. For
example, the servers of a data center belonging to a single
owner and collaboratively perform a computing task and thus
belong to collaborative computing. In the collaboration model,
there are sub-areas of collaborative computing, coordinative
computing, collective computing, and cooperative computing.
A summarize of their differences is in [4]. We do not further
differentiate these models in this paper.

From the perspective of the computing model, we further
classify it into three sub-categories: computing, intelligence,
and learning/analytics tasks, and it focuses on learning some
knowledge from the data or experimental observations. An
intelligence computing task is a special form of the general
computing task. A learning/analytics computing task is a
special intelligence computing task as the latter emphasizes
computing that involves data; which is not necessary for a
general intelligence computing task. The analytics computing
task can be referred from a general perspective or specialized
perspective. A general analytics computing task refers to a data
analytics task that draws conclusions from data, and it includes
learning, inference, and non-machine learning analytics. As a
result, learning is part of analytics. A specialized analytics
computing task specifically refers to the model inference
computing task.

An abstract federated analytics model is shown in Fig.
There are local devices and a coordination server. The
execution process of federated analytics is usually divided
into four main steps. First, a global model or analytics task
is distributed to the local devices. Second, each local device
performs local analytics using its own data. Third, the local
analytics results are reported to the coordination server. Fourth,
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Fig. 1: A Taxonomy for federated analytics. Under this
taxonomy, there can be distributed intelligence, collaborative
computing, collaborative analytics, federated analytics, etc.
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Fig. 2: An abstract federated analytics model.

the server aggregate local results to generate a final analytical
result. This abstract model shows the key elements of federated
analytics: an untrusted environment with the necessity of local
data analytics.

III. WHY FEDERATED ANALYTICS

Federated analytics is, on the one hand, primarily pulled by
the demands of applications. On the other hand, the enabling
technologies and the infrastructure are becoming mature and
ready, pushing the emergence of federated analytics.

A. Application Demands

Increasing demands on collaborative data analytics: Data
analytics have been proven effective in every aspect of our
life today. Companies can turn raw data into relevant trends,
predictions, projections with unprecedented accuracy and gain
insights that drive intelligent decision-making. A Bain & Com-
pany survey of over 400 businesses found that organizations
that make the most use of data tend to pull ahead of industry
peers. Such companies are twice more likely to be in their
industry’s top quartile of financial performance and five times
more likely to make decisions faster than market peers.

Collaborative data analytics is essential to improve data
coverage, especially for companies that routinely rely on big
data to inform business practices but have exhausted their
internal data silos. American Airlines and Citi, for example,
have been sharing their customer data for over thirty years
to increase customer loyalty and boost credit card spending.
During COVID-19, effective decisions about public health
action are made due to data sharing of clinical trials, ob-
servational studies, operational research, routine surveillance,



information on the virus and its genetic sequences, as well as
the monitoring of disease control programmes.

Data-driven analytics methods have been proposed in in-
dustry. For example, a Bayesian inference method [5]] has
been proposed for the status of high-speed rails. Through
periodic posterior updates with real-time data using onboard
sensors, it is shown that fault diagnosis can be much improved
as compared to currently fixed schedule fault inspections.
Machine learning models [6] have also been developed for the
status prediction of Heating, Ventilation, and Air Conditioning
(HVAC) systems so that HVAC operation can be individualized
to reduce the wastes and overprovisioning of a preset operation
procedure.

Increasing Concerns on Privacy and Confidentiality: In
another dimension, there is also increasing awareness on
privacy issues along with the adoption of data analytics. In
2018, GDPR were introduced. The GDPR contains provisions
and requirements related to the processing of personal data of
individuals who are located in the European Economic Area
(EEA), and applies to any enterprise—regardless of its location
and the data subjects’ citizenship or residence. Around the
world, more than 60 jurisdictions have enacted or proposed
postmodern privacy and data protection laws.

Within the first year of GDRP, its fines totalled €56
million, with more than 200,000 investigations. The tech giant
Facebook was fined £500,000 by the UK’s data protection
watchdog for the Cambridge Analytica data scandal, in which
the personal data of millions of Facebook users was predom-
inantly used for political advertising without their consent.
Facebook CEO Mark Zuckerberg testified in front of Congress
on April 12th 2018 to respond to the scandal.

In addition to personal data privacy, business vendors also
have confidentiality concerns. It has been reported that while
data analytics can help business to improve the efficiency
in their operation and maintenance, the industry operation
procedure details are sometimes a core competitive advantage
of the company, and thus sensitive to be released [7].

B. Technology Readiness

Increasing Data Generation in Edge: There is an increasing
number of edge devices such as smartphones, tablets, wearable
devices, industry sensor systems, AR/VR, etc. The average
time usage is increasing. A recent report shows that an average
user spent 4.3 hours on their mobile device in 2020. Therefore,
the amount of data generated in the edge is exploding. The
IDC Data Age 2025 report forecasts that the edge devices are
expected to create over 90 zettabytes of data by the year of
2025, which is almost 52% of the total data.

Increasing Edge Resources: The edge resources keep in-
creasing. One pillar is the hardware advances, in particular
the processor for edge devices, such as FPGA, edge GPU,
accelerator, etc. Many hardware companies participate in the
chip development, e.g., Nvidia developed Jetson Nano to
support embedded IoT applications [8]] and apple developed
a Bionic chip Xnor to power their flagship iPhones. The
other pillar is the continuous upgrade in communication and
networking, e.g., recent advances in 5G enable edge devices to
communicate in high speeds, high reliability and low latency.

Platform Development: Recently, along with the develop-
ment of edge computing and edge learning, a number of
platforms for decentralized computing and learning emerge.
These platforms help reduce the barrier in software devel-
opment, allowing developers to emphasize on data analytics,
rather than facing bare metal hardware and low level details.
As an example, TensorFlow Federatecﬂ (TFF) was developed
and released by Google. It is an open source platform for
experimenting with machine learning and other computations
on decentralized data. To enhance the privacy of edge devices,
TensorFlow Privacy was developed and released. It is an open
source library based on the differential privacy technique.

Privacy: Privacy has become an important research issue
well before the explosion of big data today. The general
technique is to add noise so that the original data cannot be
easily differentiated. Common privacy concerns such as iden-
tity privacy, location privacy, etc have been heavily studied.
Quantitative metrics have been developed, such as differential
privacy and K-anonymity. There are development in specific
fields such as computer vision, for example, visual privacy
protection methods are summarized in [9].

C. Case Studies

Google Gboard: Gboard is a virtual keyboard app de-
veloped by Google for smartphones. Gboard provides many
intelligent features to assist user typing, such as next word
prediction, keyboard search suggestion, emoji prediction, etc.
Deep learning models are trained for these features. However,
user typing behaviors are privacy sensitive. This has led to the
proposal of the federated learning paradigm, where the deep
learning model training is carried out by local training and
only exchanging the gradients among peers.

To improve the quality of service of Gboard, the applied
deep learning models should be evaluated iteratively to reflect
the change of the smartphone users. In a traditional approach,
machine learning model evaluation is executed in a centralized
server with collected data. As said, the user data are privacy
sensitive, making such an approach again not viable.

This has led to the proposal of federated analytics by Gboard
engineers [[10] to measure the overall quality of the next
word prediction models against raw typing data held on user
phones: the participating phones locally computed a metric
on how well the model predictions match the words that are
actually typed, and then the engineers obtain a population-
level summary (i.e., the analytics results, not the raw data) of
the model performance by averaging the metrics uploaded by
the participating phones. Experiments show the accuracy of
mean relative prediction increases for 14.5%.

Federated analytics has also been used in other smartphone
applications. For example, Google Pixel is a music recom-
mendation system. In this application, user behaviors are also
sensitive data. The music recommendation measurement can
apply federated analytics to find the high rank musics without
revealing which musics are preferred by an individual phone.

Video Analytics: Video analytics using networked smart
cameras has become a core function for many applications

https://www.tensorflow.org/federated



such as surveillance, object detection, AR/VR, etc. Many
applications require multiple cameras to collaboratively com-
plete a video analytics task to avoid the problems on limited
view scopes, image missing and errors, low-resolution videos,
etc. Typical examples include 3D Reconstruction, Multi-view
Object Re-identification, etc.

Unfortunately, image sharing can lead to privacy concerns
in many applications. One example is the High Definition
Map (HD Map) used for autonomous driving. An HD Map
has a highly dynamic layer of real-time objects. Vehicles can
collectively contribute videos from their on-board cameras to
construct such a layer, yet the video images can contain private
information, e.g., the plate number of front cars.

Existing edge-cloud video analytics schemes emphasize on
resource constraints, e.g., the computing and communication
resources in an edge camera can be limited. Video analytics
workload partition between edge devices and the cloud is a
common theme in optimizing resource utilization. A recent
study showed that existing privacy-agnostic workload partition
can leak sensitive information and a new federated video ana-
Iytics architecture, FEVA, was proposed for privacy-preserving
collaborative video analytics [2].

We illustrate the core idea of FEVA in Fig. [3] Multiple
edge cameras collaboratively contribute images to construct a
new comprehensive image, see Fig. [3] (a). The FEVA study
observed that current edge-cloud architecture partitions the
video analytics workload in a privacy-agnostic way, which can
lead to the leakage of analytics irrelevant yet privacy-sentitive
information, see Fig. [3] (b). A FEVA architecture is proposed
to effectively address such an issue, see Fig.[3](c). Intrinsically,
FEVA keeps the video image data local to the edge for
analytics and transmits the analytics results to the cloud for
aggregation. It partitions the video analytics computing tasks
in a way that is privacy-preserving and maximizes the overall
analytics accuracy under the computing and communication
resource constraints of the edge devices. It is implemented
by extending the open-source platform TensorFlow Federated
from Google. The benefit of FEVA is two-fold: (1) an accuracy
improvement of 1.90 times as compared to a privacy masking
video analytics method which simply removes the privacy
information and (2) a 16.80% reduction in communication
since the size of features streamed to the server can be reduced
significantly. Their measurement also shows that, as compared
to the method that performs video analytics in the server, while
the computation time increases for 15.9%, the overall latency
remains the same due to the reduced communication time.

IV. OPPORTUNITIES AND CHALLENGES
A. Architecture

To support the emerging federate analytics applications, it is
important to develop architectures with abstractions at various
layers. Such architectures can facilitate functional division and
accelerate application development. Federated analytics are
unique in the sense that the peer devices are organized in
a federated manner, the computing tasks are data analytics,
and there are various privacy mechanisms. These lead to
the necessities on peer management, data organization and
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privacy management. We show an example federated analytics
architecture in Fig. ]

At the bottom, we can face the problem of heterogeneous
edge devices. It is thus necessary to have a device management
layer with an abstraction that can provide a uniform logic
view of peer devices. Drivers or adapters can be developed so
that the heterogeneous edge devices can be registered into the
federated analytics system.

On top of the device management layer is a peer man-
agement layer, where an overlay of peers is created. There



are a set of problems on peer selection, peer searching, peer
dynamics, incentive mechanism design, etc. Overlay network
and overlay management have been studied in past decades in
the research of peer to peer networks. The difference here is
that the computing task is not file or video broadcasting, but
data analytics with privacy concerns. This brings about new
challenges in the peer management designs.

On top of the peer management layer is a data organization
layer. One critical part of federated analytics is to have a
uniformed view of data. As such, developers only need to
worry about what data is needed for the analytics design, rather
than how to reach the data and how to handle the heterogeneity
of data, e.g., in data format, etc. A new logic data organization
is thus necessary. There are a set of problems on data naming,
data formatting, data retrieval, etc. A new data querying
language can be developed to facilitate data acquisition for
the federated analytics application development.

There is a privacy and security management module, which
interact with each of the aforementioned layers. For example,
Secure multi-party computation (SMC) is a cryptographic
method, where computation is carried out on encrypted data;
thus data can be organized in encryption to accelerate data
analytics computing. We will discuss privacy and security
management in detail shortly.

On top of the data organization layer are APIs for applica-
tion development. The applications can further abstract context
related functions. For better service and efficient development,
unified management of APIs is necessary. One aspect is
to manage the life cycle of APIs, including accessibility,
reliability, performance, etc. API management tools such as
Apigee by Google can be used. The service If-This-Then-That
(ITFFF) helps applications connect for better service. Another
aspect is to provide flexibility of APIs, specifically, to make
the interactions between applications easier. For example,
feature extraction function is served for both 3D reconstruction
and target tracking, thus flexible design is necessary for the
utilization of both applications. Solutions similar to Home
Assistant and openHAB can be considered as options.

The proposed architecture shares similarities with a fed-
erated learning architecture. For example, in Tensor Flow
Federated, there is also a peer management module, called
Client Manager. We illustrate some differences. One example
is the data in federated learning are organized in the same
format since the computing task is to train a model using all
data. For example, to train a YoLov2 model in TensorFlow,
the images are formatted into 224x224 image size and divided
into a batch with batch size 10. In federated analytics, the
computing task may need to select one out of multiple models
for analytics. For example, in FEVA, a YoLov2 model and an
Alexnet model can be selected during the federated analytics
execution. Here the YoLov2 model needs the image size to
be 224x224 and the Alexnet model needs the image size to
be 128x128. To hid such details from the applications above,
indexing structures can be established to organize the data to
adapt to lower layer specifics and improve the performance of
federated analytics. There are a number of structures such as
Skip List, FITing-tree, developed in the past.

B. Privacy and Security Management

There are privacy and security issues in all stages of
federated analytics, e.g., in peer management, raw data and
intermediate data protection.

There are two broad types of threats in federated analytics:
observe threats and tamper threats. In observe threats, the
adversary tries to infer the sensitive raw data over the process
of federated analytics. For example, inference attacks can learn
the characteristic of the private data from the intermediate
results. In tamper threats, the adversary tries to degrade the
performance (i.e., accuracy or execution time) of the analytics
tasks. For example, poisoning attacks attempt to tamper the
raw data or intermediate results with some poisoning functions
to significantly degrade the accuracy of the final results.

Cryptographic methods are classical privacy and security
mechanisms that can be used for observe threats. The basic
workflow is as follows. The messages are encrypted by the
source participants before transmission. The intermediate op-
erations are carried out on the encrypted messages. Finally, de-
cryption of the encrypted output leads to the final result. SMC
and homomorphic encryption (HE) are typical cryptographic
methods used in distributed systems. One disadvantage of the
cryptographic methods is that the encryption and decryption
operations can have high computation overheads, which needs
to be addressed in practical systems.

Differential privacy (DP) is also a popular privacy and
security mechanism for observe threats. It guarantees that one
single record will not influence much on the output of a
function. By injecting random noises to the data or the inter-
mediate results, differential privacy provides statistical privacy
guarantees for individual records and protection against infer-
ence attacks. One disadvantage of DP, e.g., Apple’s Sequence
Fragment Puzzle (SFP) mechanism, is that the system utility
may be largely decreased if heavy noise is injected for high
privacy guarantee. Classical privacy mechanisms may need
to be properly re-designed to balance the trade-off between
privacy degree and system utility, see Google’s trie-based
heavy hitters (TrieHH).

Blockchain is a trust mechanism that can be used for tamper
threats. It is a distributed digital ledger of cryptographically
signed transactions with a consensus mechanism. With the
proof of work consensus mechanism, the record of intermedi-
ate results in blocks cannot be tampered. Thus, tamper threats
such as poisoning attacks can be prevented. One disadvantage
of blockchain is the computation complexity in solving the
puzzles when publishing new transactions. Estimates show that
the Bitcoin blockchain network consumes the same amount of
electricity as the country of Ireland [[11]].

There can be special privacy issues in an individual domain.
For example, visual privacy has been heavily studied in
computer vision. There can be three major categories of visual
privacy protection methods. First, the intervention methods,
i.e., to prevent sensitive image from being captured from the
very first place. Second, the blind vision and secure processing
methods, i.e., to conduct privacy-preserving computation, for
example, using the SMC method discussed above. Third, the
redaction and data hiding methods, i.e., image filtering, image



modification, image de-identification, and removal, replace or
hide the sensitive section of the image.

C. Resource Management

In federated analytics, edge devices can have resource
constraints. Optimization of a number of resources is neces-
sary. We discuss four types of resources: computing power,
communication, energy, and monetary cost.

Analytics tasks can bring about non-trivial computing work-
loads, e.g., a deep learning model inference. There can be
different types of computing workloads. For example, a video
analytics task can consist of an image filtering operation
and a neural network model inference operation. The former
brings about instruction intensive computing workloads since
it consists of a large number of pairwise addition and sub-
traction of the two sets of pixels in adjacent image frames
in a video. The later brings about data intensive computing
workloads since it needs to fit an image into a neural network
model. There are different types of computing resources, e.g.,
CPU, GPU, state-of-the-art FPGAs, and dedicated Al chips
from Nvidia, XILinx, Intel, each of which is suitable for
certain types of computing workload acceleration. Computing
resource management is critical for the system performance in
latency, energy consumption, etc.

Communication can be a bottleneck factor for a federated
analytics application. For example, in [2], a GAN model is
used to generate intermediate insights, which are then deliv-
ered to the coordinator for aggregation. However, it is shown
that the intermediate data generated by the GAN model can
sometimes even be greater than the raw data, and bring about
significant communication delay. On the other hand, there
are multiple communication methods to choose at the edge
devices, in the form of wireline and wireless, with significant
difference in costs, delay, reliability, bandwidth variances, etc.
Communication choices and optimization are important to the
overall system performance.

Battery is a precious resource for edge devices. Both
computation and communication consume energy. In the past
decades, we have seen a large number of research on low
power and energy efficient designs. In federated analytics, a
trade-off of the energy and the objectives of the analytics
computing task, e.g., accuracy and privacy, is necessary.

There are rental costs in the edge side. Wireless com-
munications have costs, e.g., NB-IoT, 3G/4G, etc. Dedicated
communication channels, such as Agora can provide private
lines to the cloud with certain QoS guarantee; yet they also
have rental costs. Edge side services, e.g., Amazon AWS
Panorama with SDK, also have rental costs to provide the
computing infrastructure services and software services. Ded-
icated analytics models have also been developed for sale.

D. Analytics Design and Optimization

The federated analytic mechanism design and optimization
are gradually emerging. We present a few examples as follows.
Frequent items discovery: In many applications, discov-
ering heavy hitters (most frequent items) in user-generated
data streams is important for improving user experiences,

but this operation can also incur substantial privacy risks. A
federated analytics scheme TrieHH [[12] was proposed. TrieHH
is a distributed algorithm using sampling and thresholding
techniques. It is proven to inherently support DP without
adding additional noise. The trade-off between privacy and
utility was also examined; here the utility is the discovery rate
of the heavy hitters. TrieHH shows excellent utility while also
achieving DP guarantees. A significant advantage of TrieHH
is that it eliminates the need to centralize raw data while also
avoiding the significant loss in utility incurred by DP. TrieHH
was validated both theoretically, using worst-case analyses,
and practically, using a Twitter dataset with 1.6M tweets
and over 650k users. Compared to Apple’s DP method for
discovering heavy hitters, the recall and precision of TrieHH
are improved up to 1.6 times and 1.0 times, respectively.

Defense of local model poisoning attack: Local model
poisoning (LMP) attack is an attack that manipulates the
shared local models during the process of distributed learning.
Existing defense methods are passive in the sense that they
try to mitigate the negative impact of the poisoned local
models instead of eliminating them. A recent study [13]]
show that with federated analytics, proactive analytics can
be done for a suspicious peer, while preserving privacy of
all peers. More specifically, a Federated Anomaly Analytics
enhanced Distributed Learning (FAA-DL) framework was pro-
posed. FAA-DL firstly analyzes all the uploaded local models
and observes the potential malicious ones. Then, it requires
potential malicious peers to upload raw data with functional
encryption, which protects privacy. It verifies each potential
malicious local model with HE. Finally, it removes the verified
anomalies and aggregates the remaining to produce the global
model. Through theoretical analysis, FAA-DL is shown to
be robust to strong attacks with high accuracy and low time
complexity. The convergence rate is O (Tl), where T is the
training iterations. Experiments show that FAA-DL improves
the accuracy of the learned global model under strong attacks
for 6.90 times and outperforms the state-of-the-art defense
methods with a robustness guarantee.

Data skewness mitigation in federated learning: Non in-
dependent and identically distributed (Non-IID) data distri-
bution is a major problem in federated learning: the data
distribution is heterogeneous among edge devices, termed as
skewness; and since model training is performed locally on
the edge devices and cannot be shuffled among peers, the
performances of the trained machine learning model can be
significantly degraded. A Federated skewness Analytics and
Client Selection mechanism (FedACS) [14] is proposed. In
principle, FedACS quantifies the skewness of the participating
peers by privacy preserving sampling; and selects peers with
small skewness. More specifically, FedACS has three steps.
First, FedACS derives insights from the local data uploaded to
the server. Second, the central server aggregates these insights
to estimate the skewness of the clients using Hoeffding’s
inequality which has provable properties. Third, based on the
estimations on drifting, FedACS select clients with milder
skewness using a dueling bandit approach. Experiment results
show that FedACS reduces the accuracy degradation by 65.6%,



and speeds up the convergence 2.4 times.

Privacy preserving distribution estimation: Distribution esti-
mation on a global dataset is a foundation task for a wide range
of applications. Existing distribution estimation methods com-
monly require to have access to the overall population, yet this
can lead to privacy concerns in many applications. A recent
proposal [|I5] overcame this issue using federated analytics.
More specifically, it models and formulates a joint distribution
discovery based federated analytics problem. Then, a federated
Markov Chain Monte Carlo with delayed rejection (FMCMC-
DR) method is proposed to estimate the representative param-
eters of the global distribution, which combines the rejection-
acceptance sampling and delayed rejection techniques, so that
the proposed method is able to explore the entire state space.
The method is applied to a digital twin case, where distribution
estimation in the digital twin space of the physical space is
necessary. Numerical experiments show the high performance
of FMCM-DR. Compared to a standard Metropolis-Hastings
(MH) algorithm and a random walk Markov Chain Monte
Carlo method (RW-MCMC), the proposed algorithm has an
improved contour accuracy of 50% and 95%, respectively.

E. Business Model

In addition to the architecture and performance challenges,
a good business model is also important for the success of
federated analytics applications. We discuss the pricing model
and the incentive mechanisms.

From the perspective of federated analytics service
providers, federated analytics provide users potential improve-
ment in user experience and quality improvement, e.g., a
high accuracy HD map, system robustness against attacks,
an accurate grouping of users with similar interests in Floc,
or prognosis of industrial systems. Such value-added ser-
vices should be carefully priced to ensure an overall healthy
eco-system in the federated analytics development. Existing
pricing models, e.g., pay-as-you-go, time dependent pricing,
etc, may not be appropriate for federated analytics services.
New pricing models, e.g., model-based pricing, need to be
developed to guarantee the profit of the service provider,
acceptability of users, as well as other data-related properties,
such as data arbitrage-free.

Within the federated analytics peer participants, there should
be appropriate incentive mechanisms to ensure the peers to
have enough motivation to contribute to federated analyt-
ics. Incentive approaches include entertainment, service, and
money. Entertainment incentives turn federated analytics into
playable games to attract peers. Service incentives are inspired
by the principle of mutual benefits. Monetary incentives give
participants payments for their contributions. Typical incentive
mechanism designs should have properties such as truthful-
ness, individual rationality, and budget balance. In federated
analytics, a special challenge issue is data heterogeneity, and
careful design is needed to ensure incentives given the data
heterogeneity in peers.

V. CONCLUSION

In this paper, we presented federated analytics, a new dis-
tributed computing paradigm for collaborative data analytics

with privacy concerns. We present the definition of federated
analytics and clarify its position in the research literature. We
showed the two triggers of federated analytics. The first is the
real demands on collaborative data analytics and the increasing
concerns and restrictions on privacy and confidentiality issues.
The second is the technology readiness on edge data and edge
resources, and software platform support. These will lead to
foreseeable booming of federated analytics. Nevertheless, the
application scenarios, design and optimization techniques as
well as the business models specifically on federated analyt-
ics, are still immature and need clarification. We presented
two case scenarios and we presented the opportunities and
challenges in the designs of architecture, privacy management,
resource management and business models. We presented
some examples on federated analytics design and optimization.
To expand application development and enrich the federated
analytics technologies, collected efforts are clearly needed.
This paper serves one effort towards this direction.
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