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ABSTRACT

The ever-growing deployment scale of surveillance cameras and the
users’ increasing appetite for real-time queries have urged online
video analytics. Synergizing the virtually unlimited cloud resources
with agile edge processing would deliver an ideal online video
analytics system; yet, given the complex interaction and depen-
dency within and across video query pipelines, it is easier said than
done. This paper starts with a measurement study to acquire a
deep understanding of video query pipelines on real-world camera
streams. We identify the potentials and practical challenges towards
cloud-edge collaborative video analytics. We then argue that the
newly emerged serverless computing paradigm is the key to achieve
fine-grained resource partitioning with minimum dependency. We
accordingly propose CEVAS, a Cloud-Edge collaborative Video Ana-
Lytics system empowered by fine-grained Serverless pipelines. It builds
flexible serverless-based infrastructures to facilitate fine-grained
and adaptive partitioning of cloud-edge workloads for multiple con-
current query pipelines. With the optimized design of individual
modules and their integration, CEVAS achieves real-time responses
to highly dynamic input workloads. We have developed a proto-
type of CEVAS over Amazon Web Services (AWS) and conducted
extensive experiments with real-world video streams and queries.
The results show that by judiciously coordinating the fine-grained
serverless resources in the cloud and at the edge, CEVAS reduces
86.9% cloud expenditure and 74.4% data transfer overhead of a
pure cloud scheme and improves the analysis throughput of a pure
edge scheme by up to 20.6%. Thanks to the fine-grained video
content-aware forecasting, CEVAS is also more adaptive than the
state-of-the-art cloud-edge collaborative scheme.
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1 INTRODUCTION

Recent years have witnessed an explosive increase in camera de-
ployment. For instance, it was reported that there would be one
billion surveillance cameras watching around the world in 2021
[17], and the global surveillance camera market is predicted to
account for US$ 45.93 billion in 2027 [45]. To fully unleash the
potentials of these deployed cameras, video analytics applications
have been developed to help various public and private entities
(e.g., law enforcement agencies and retail stores [31]) to increase
efficiency, reduce costs, and improve security. Specifically, the goal
of these video analytics applications is to answer users’ queries
about spatial and temporal events occurring in video streams (e.g.,
How many cars are there in the video stream during rush hours
today?). The ever-growing deployment scale of cameras and users’
increasing appetite for real-time queries have inspired the need for
designing high-performance online video analytics systems.

The advent of deep neural networks (DNNs) has revolutionized
video analytics accuracy with higher resource demands [16, 21]. To
overcome the resource challenge of high-accuracy video analytics
at scale, the status quo solutions either resort to the resource-rich
cloud to build virtual machine (VM) clusters or invest in power-
ful hardware to build private clusters [34, 55]. Nevertheless, this
solution inevitably introduces latency caused by variable network
conditions, especially when streaming high-definition (HD) videos
through wireless networks [13]. Alternatively, analyzing video
streams at the edge can provide real-time insights and reduces
the cloud and bandwidth costs, but suffers severe performance
degradation due to the constrained edge resources [13, 33]. An
ideal solution to solve such a fundamental dilemma is to oppor-
tunistically push partial analytics tasks from the cloud to the edge
for latency and costs reduction [13]. In real-world deployments,
designing such a cloud-edge collaborative online video analytics
system is easier said than done, and it presents several non-trivial
challenges in:


https://doi.org/10.1145/3458305.3463377
https://doi.org/10.1145/3458305.3463377

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

o Avoiding unnecessary resource provisioning. Although cameras can
generate video streams 24 X 7, provisioning a dedicated cluster to
analyze all of them is unnecessary since the events of interest can
be rare and only last for a short period (such as flame or smoke)
[13, 28, 52, 56]. Thus, traditional resource provisioning strategies,
such as configuring a cluster according to the peak utilization or
one-time offline profiling, lead to low resource efficiency.

o Addressing fine-grained content dynamics. A typical video ana-
lytics query involves a set of cascade computer vision primi-
tives [30, 34, 55], such as object detection [44], object tracking
[11, 12, 50], image classification [33]. These primitives are cou-
pled with each other through video content and form a query
pipeline. The input workload and further resource demand of
each primitive are affected by video content dynamics. Unfortu-
nately, as revealed in our measurement study (details in §2.2), the
video content dynamics are fine-grained and cannot be adapted
by coarse-grained VM-based solutions.

o Handling multi-tenancy at the edge. The edge video analytics
can be executed at smart cameras [32, 35] or edge servers [33].
Considering the already widely deployed low-cost non-smart
cameras, we focus on the latter case. Assume multiple cameras
are connecting to an edge video analytics server. For a camera
stream, different query pipelines can glean information of interest
simultaneously. For instance, for a camera mounted at a busy
intersection, a car counting query only pays attention to cars,
while a jaywalker query is interested in pedestrian behavior. As
such, multiple concurrent queries on multiple streams can be
submitted to the same edge server and compete for the limited
resources, thereby forming a multi-tenant environment.

o Identifying the “sweet spot” for collaboration. For multiple con-
current video queries, which primitives of which queries should
be placed on the edge server or in the cloud is a fundamental
issue. Finding out the best partition strategy is tricky since differ-
ent primitives have different edge-execution resource demands,
cloud-edge data transfer costs, and cloud-execution expenditures.

In this paper, we propose CEVAS, a novel Cloud-Edge collaborative
online Video Analytics system with fine-grained Serverless pipelines,
to tackle the aforementioned challenges. To the best of our knowl-
edge, CEVAS is the first video analytics system that introduces server-
less computing to address the fundamental challenges in cloud-edge
collaboration. Specifically, the fine-grained and automatic resource
management provided by serverless computing helps CEVAS dramat-
ically improve the resource efficiency in the cloud. The fine-grained,
scalable, and lightweight compute infrastructure of serverless com-
puting also facilitates the real-time workload-aware revision of the
cloud-edge partition strategy. It simultaneously creates the possibil-
ity of handling unpredictable video query patterns and fine-grained
video content dynamics.

CEVAS is a video analytics system spanning the cloud and edge
that can automatically and dynamically identify the optimal cloud-
edge partition points for concurrent serverless video analytics
pipelines and orchestrates their executions between the cloud and
edge. In particular, for each online serverless video analytics pipeline,
it effectively forecasts the video content-dependent resource de-
mand, cloud expenditure, and data transfer overhead for different
cloud-edge partition points. Then, it identifies the best partition
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Figure 1: Two representative types of video query pipelines.

strategy for all online pipelines according to the prediction results
and available edge resources to minimize the cloud execution costs
while maximizing the edge resource efficiency. With the optimized
design of individual modules and their integration, CEVAS achieves
real-time responses as well as fine-grained scalability and adapta-
tion. In general, our contributions can be summarized as follow:

o To acquire a deep understanding of how video content affects the
input workloads of cascaded primitives in video query pipelines,
we analyze massive camera videos collected from the real world.
By introducing two metrics for characterizing video content dy-
namics, our measurement study justifies the considerable benefits
of designing a fine-grained content-aware pipeline partition strat-
egy and provides insights for predicting the content-dependent
resources and costs of each pipeline primitive.

o We present CEVAS, a video analytics system that integrates the
edge and cloud resources to have the best of both worlds and
leverages serverless computing to tackle the challenges that arise
in the collaboration. We further present the detailed design of
the Controller of CEVAS. Through the video content-aware fore-
casting and fine-grained workload-aware runtime scheduling,
the Contoller can dynamically adjust the cloud-edge partition
strategy for online video query pipelines, thus handling the ever-
changing input workloads.

o To validate the real-world performance of CEVAS, we overcome
the challenges of integrating it into the real-world cloud com-
puting platforms and implement a prototype with Amazon Web
Services (AWS) [5] and off-the-shelf edge devices. Extensive eval-
uations demonstrate that CEVAS can handle multi-tenant video
queries in near real-time with significantly reduced cloud expen-
diture (13.1% of PureCloud) and data transfer overhead (25.6% of
PureCloud). Furthermore, it is more adaptive than the content-
agnostic cloud-edge collaborative video analytics scheme.

2 MEASUREMENT AND MOTIVATION

In this section, we first provide an introduction to typical video
query pipelines. Then, based on two representative video query
pipelines and two real-world camera streams, we reveal remarkable
insights about how to characterize video content dynamics and
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Primitive Model DNN Input Output Stream Name Crossroad Restaurant
Vehicle Detector YOLOv3 [44] Yes F BB Frame Rate 10 FPS 1 FPS

Vehicle Tracker SORT [12] No BB T Resolution 1080p 1080p

Vehicle Counter Self-implement ~ No T R Query Type Vehicle pipeline Face pipeline

Face Detector CenterFace [53] Yes F BB +1 Video Source  YouTube Live [48] YouTube Live [47]
Face Tracker SORT [12] No BB+1 I Description A busy crossroad A roadside restaurant
Age Classification AgeNet [40] No I R

Gender Classification  GenderNet [40] No I R Table 2: Real-world camera streams used in this paper.

Table 1: The default model choices and I/0 specifications of
vehicle and face query pipelines. “F” refers to frames; “BB”
refers to bounding boxes; “T” refers to tracklets of vehicles;
“I” refers to face images; “R” refers to the query results.

design a high-performance video analytics system. Finally, we dis-
cuss the opportunities brought by serverless computing to handle
fundamental challenges in building online video analytics systems.

2.1 Video Query Pipelines

Common computer vision primitives involved in advanced video
analytics pipelines include object detection [44], object tracking
[11, 12, 50], image classification [33], recognition [24], etc. Figure 1
displays two representative video query pipelines discussed in this
paper. These two query pipelines have widespread usage in our
daily life. For example, the vehicle pipeline can help manage traffic
by counting vehicles appearing in a camera installed in a crossroad
or a parking lot. The face pipeline can help profile customers by
classifying the age and gender of customers appearing in the video
stream of a store camera.

When a video stream is fed to the vehicle pipeline, the detec-
tor primitive is first executed to extract vehicles. It then sends the
detected result (the bounding boxes of detected vehicles) to the
following tracker primitive. After processing, the tracker primitive
sends the entire movement trajectory (a series of centroid coordi-
nates) of the tracked vehicle to the subsequent counter primitive for
directional counting. For the face pipeline, the face detector prim-
itive is responsible for extracting all faces appearing in the input
video stream and sending cropped face images and their bounding
boxes to the face tracker, which excludes duplicated faces. After
that, the deduplicated face images are sent to downstream primi-
tives for age or gender classification. The I/O specifications of each
primitive in the vehicle and face pipelines are shown in Table 1.

Each primitive in a video query pipeline has multiple configu-
ration knobs (such as frame rate, resolution, and implementation
algorithms). The choices of these knobs determine resource de-
mands (i.e., resources required to catch up with the input data
rate) and the analytical accuracy. Depending on the use case, one
can tune these knobs according to the performance goals. Gener-
ally, knob values leading to high accuracy require high resource
demands (e.g., 30 FPS, 1080p, and a state-of-the-art DNN based
algorithm). In contrast, knob values with lower resource demands
tend to sacrifice accuracy (e.g., 1 FPS, 240p, and a classical computer
vision algorithm).

How to configure the configuration knobs to strike a balance
between resource demand and accuracy is a hot topic in data center
resource management, and several frameworks or systems [30, 34,
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Figure 2: CDF of objects of interest.

55] have been proposed to provide guidelines for users. In this
paper, we assume users have tuned these knobs according to their
accuracy expectations in advance and will focus on designing a
cloud-edge collaborative video analytics system. In particular, the
default implementation model or algorithm choices for the vehicle
and face pipelines are shown in Table 1.

2.2 Characterizing Real-world Video Streams

To identify real-world video stream characteristics towards support-
ing the design of cloud-edge collaborative video analytics systems,
we analyze two consecutive 48-hour video clips collected from two
real-world cameras (details in Table 2). To ensure reasonable an-
alytical accuracy, we set the resolution of both streams to 1080p
and the frame rate for Restaurant stream at 1 FPS and Crossroad
stream at 10 FPS (as the mobility and speed of vehicles are higher
than humans.). Concretely, by analyzing these two real-world video
streams, we are trying to answer the following questions: (1) How
often do the objects of interest appear in 24 X 7 video streams?
(2) How does video content change with time? (3) How do video
content dynamics affect the input workloads of cascaded primitives
in a video query pipeline?

Vehicles and human faces are the most frequent object classes
for the Crossroad stream and Restaurant stream, respectively. De-
spite this, as demonstrated in Figure 2, with state-of-the-art DNN
detectors (details in Table 1), there are still 18.58% frames of the
Crossroad video clip without vehicles being detected and 50.19%
frames of the Restaurant video clip without faces being detected.
This observation indicates that the streams have no content worth
querying for a notable portion of the time. This means there is no
need to allocate or provision dedicated resources for video steams
and suggests a considerable potential to save network and compute
resources by developing a content-aware resource scheduler.
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Figure 3: Camera stream characteristics (statistics of two
consecutive days.)

The number of detected objects of interest (vehicles or faces)
directly impacts the tracker primitives’ input workloads as it deter-
mines how many trackers the tracker primitives need to maintain,
thereby influencing their resource demands. For detectors that em-
ploy cascade models, the number also has a considerable effect
on the detector’s resource demand. The number of deduplicated
vehicles indicates the input workload of the counter primitive since
it determines how many vehicle tracklets need to be classified. For
a similar reason, the number of deduplicated faces indicates the
input workload of the downstream classifier primitives. To further
quantify video content dynamics, we define the average objects
per frame (AOPF) metric and the average unique objects per frame
(AUOPF) metric as follows:

Yier # of detected objects in frame i

AOPF =
#of frames in time window T

M

# of deduplicated objects in time window T
AUOPF =

@

We present the variations of these two metrics over time in Figure
3a and Figure 3b (T is set to 1 minute in these two figures). As one
can see, both metrics show apparent variations across the day on
both video streams, which indicates one-time offline or coarse-
grained online profiling is not able to capture the content dynamics.
Thus, fine-grained workload profiling or prediction is necessary to
adapt to the video content and achieve the most benefits. Fortunately,

# of frames in time window T
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we also observe fine-grained temporal correlation, which can be
attributed to the fact that vehicles or faces usually occur across
multiple frames, and it takes time for them to fade from the camera’s
field. This observation inspires us to predict these two metrics by
incorporating time-series dependency information.

Video content dynamics can also affect the input data size of each
primitive, which is crucial for a cloud-edge collaborative system
as it determines the amount of data to be transferred between
decoupled primitives. Figure 4 shows the input data size variations
for cascaded pipeline primitives. One can observe that as the stream
goes down the query pipeline, the generated intermediate data
size dramatically decreases, indicating the great potential of cloud-
edge collaboration in reducing bandwidth consumption. In addition,
compared this figure to Figure 3a and Figure 3b, we observe notable
positive correlations between the input data size of the tracker
(counter) primitive and AOPF (AUOPF). However, we failed to fit
them with simple linear functions since other variables (such as
the cropped image size and the length of vehicle trajectories) can
also affect the input data size. This fact means the object-related
variables (AOPF and AUOPF) and the input data size variables
cannot substitute for each other. They are all valuable metrics to
characterize video content dynamics.

2.3 Opportunities Brought by Serverless
Computing

The bursty input workloads and fine-grained video content dy-
namics that widely exist in video analytics inspire us to introduce
serverless computing [4, 36, 51]. As a general-purpose compute
abstraction, serverless computing has emerged to minimize the te-
dious administration operations and provide fine-grained autoscal-
ing computing infrastructures [36]. Recent years have witnessed the
commercial success of serverless computing represented by Func-
tion as a Service (FaaS) offerings (e.g., AWS Lambda [38], Google
Cloud Functions [25], and Microsoft Azure Functions [23]). For
instance, it is reported that AWS Lambda has already been adopted
by nearly half of the companies with infrastructure in AWS [18].

Serverless computing is a good fit to build a wide variety of
applications, such as web microservices and backends for IoT appli-
cations [2]. Recent efforts have been made to extend its application
to heavy jobs, such as data analytics [42], machine learning [14],
and video processing [7, 22]. As the public cloud extends to the
edge, developers can further deploy and run serverless functions
in the content delivery network (CDN) (e.g., AWS Lambda@Edge
[39]) and IoT devices (e.g., AWS IoT Greengrass [26]), facilitating
the design of cloud-edge collaborative serverless systems.

In Faa$ platforms, monolithic application codes are decoupled
into a series of stateless functions. Each function implements a mi-
croservice. It can be configured and invoked independently. The
same function code can be executed by multiple function instances
typically implemented by lightweight containers or sandboxes [2, 4].
Thanks to the lightweight virtualization technology, function in-
stances can scale up or down automatically in milliseconds based on
their input workloads, leading to rapid and flexible responses. This
advantage empowers serverless functions to handle fine-grained
input workload variations without resource management and mon-
itoring, achieving fine-grained scalability and adaption. Moreover,
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Figure 4: Input data size variations of cascade primitives, av-
eraging on all frames in a 10-minute window. The input data
sizes for detector primitives are compressed frame sizes.

the pay-as-you-go pricing strategy of FaaS can ensure no money
wasted on idle resources, thereby reaching high cost-efficiency.
Motivated by the advantages of serverless computing in handling
fine-grained input workloads and building cost-effective systems,
we advocate introducing serverless computing in cloud-edge col-
laborative video analytics.

3 SYSTEM DESIGN

In this section, we first introduce the serverless-based system design
of CEVAS. Then, we provide an overview description of CEVAS’
architecture. Finally, we show how CEVAS coordinates the edge and
cloud resources to handle the dynamic video query workloads.

3.1 Serverless-based System Design

To deploy a video analytics application with serverless computing,
we first need to break the monolithic code into a set of server-
less functions. For example, we can implement each primitive in
Figure 1a as a standalone serverless function. As such, the whole
video query pipeline becomes a serverless pipeline of three cas-
cade functions. Based on these serverless video analytics pipelines,
we propose CEVAS, a novel Cloud-Edge collaborative online Video
Analytics system with fine-grained Serverless pipelines.

To have the best of both cloud computing and edge computing,
CEVAS is designed to be a cloud-edge collaboration system that
can handle multiple concurrent video queries in real-time. Each
query requires executing a video query pipeline, a directed acyclic
graph (DAG) of serverless functions, on its input video stream.
The main task of CEVAS is to flexibly partition and orchestrate
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the execution of concurrent query pipelines between the cloud
and edge. Specifically, for each query, CEVAS finds a partition point,
where serverless functions before the point are executed on the edge
server, and functions after the point are executed in the cloud. All
partition points of concurrent query pipelines constitute a partition
strategy. By dynamically tuning the partition strategy, CEVAS aims
to (1) achieve high-throughput and cost-effective video analytics,
(2) achieve adaption to dynamic input workloads.

To achieve fine-grained scalability and adaptation, CEVAS oper-
ates in a small timeslot-based way, which allows CEVAS to revise
the partition strategy every timeslot in response to the input work-
load variations flexibly. Being serverless provides readily available
infrastructures to facilitate this fine-grained revision because after
processing its input workload, the serverless function instance will
automatically terminate and release occupied resources. The length
of a timeslot can be set by users and is advised to be small enough to
enable fine-grained responses. For example, in our implementation,
the default value is 5 seconds, which is the group of pictures (GOP)
length of the videos we used.

3.2 Architecture of CEVAS

We define the stream query pipeline as executing a specific serverless
pipeline on a specific camera stream. We regard the same query
pipeline executed on distinct camera streams or different query
pipelines executed on the same camera stream as distinct stream
query pipelines. Figure 5 shows the architecture of CEVAS, which
involves four entities (Users, Controller, Edge server, and Cloud).
For illustration purposes, we assume that three cameras connect to
the edge server and continually stream their captured videos to it.
We further assume that there have been 3 stream query pipelines
deployed to the system, i.e., a face query pipeline for camera stream
#2, a vehicle query pipeline for camera stream #1, and a vehicle
query pipeline for camera stream #3.

It should be noted that stream query pipelines are pipelines of
serverless functions, which will not be executed unless responding
to a user request. We say a stream query pipeline is online at a
timeslot if there is a request for executing the stream query pipeline
at the timeslot. For instance, Figure 5 shows a snapshot of a timeslot
where the face query for stream #2 and the vehicle query for stream
#1 are online while the vehicle query for stream #3 is offline. Thanks
to the small timeslot, it is reasonable to allow the Controller of
CEVAS to schedule only once in a timeslot. We assume that users
submit queries at the end of each timeslot so that the Controller can
schedule the partition strategy for the next timeslot at the end of
the current timeslot.

Specifically, CEVAS operates in the following way: at the end of
timeslot t, the Controller identifies all stream query pipelines that
are online at timeslot ¢ + 1 (Step 1 in Figure 5). It then schedules
the partition strategy for timeslot ¢ + 1 according to online streams’
characteristics and available resources on the edge server. At the
beginning of timeslot ¢ + 1, the partition strategy is then sent to
the edge server (Step 2 in Figure 5). Based on the partition strategy,
the edge server starts to execute the stream query pipelines. When
encountering the partition point of a stream query pipeline, the
edge server sends the partial (intermediate) execution results (Step
3 in Figure 5) to the cloud for further execution. Once the execu-
tions complete, the cloud and the edge server send their execution
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i.e., the first two primitives (functions) of both online query pipelines are executed on the edge server, and the other primitives

(functions) are offloaded to the cloud for execution.

information of timeslot ¢ + 1 to the Controller for its future partition
scheduling (Step 4 in Figure 5). Although there is only one edge
server in Figure 5, CEVAS can be easily extended to a scenario with
multiple edge servers by simply allowing the Controller to make
partition strategies for them at the same time.

3.3 Workload-Aware Runtime Scheduling

CEVAS relies on the Controller to address the dynamic input work-
load challenge caused by time-variant online queries and video
content. As shown in Figure 6, the Controller entails three compo-
nents, which work together to provide fine-grained workload-aware
scheduling for cloud-edge collaborative video analytics. Specifically,
the Monitor component is responsible for extracting content-related
metrics from the execution information reported by the cloud and
edge server. The extracted information is then exploited by the Pre-
dictor component to forecast the edge-execution resource demand
and cloud-execution cost of future timeslots. Finally, the forecasting
results are passed to the Scheduler component for selecting the best
partition strategy. In this section, we will introduce how to search
for the best partition strategy in detail.

3.3.1 Partition Problem Formulation. In our design, at the end
of each timeslot, the Scheduler picks partition points for all online
stream query pipelines. Each online stream query pipeline only
has one partition point. The Scheduler indexes different partition
points to distinguish between different partition options. Figure 5
demonstrates the partition points indexing examples of the vehicle
and face pipelines. The indexing scheme integrates two special
cases: #1 partition points mean executing the whole query pipelines
in the cloud (PureCloud in §5.2). In contrast, the last indices (#4 for
the vehicle pipeline and #6 for the face pipeline) mean executing
the whole pipeline on the edge server (PureEdge in §5.2).

The number of online stream query pipelines for each timeslot
t is determined since we have assumed that all query requests
are submitted at the end of timeslot t — 1. Let I; denote the set of
online stream query pipelines at timeslot t. For each stream query
pipeline i € I, let x; j be a binary variable that gets 1 when the
Jjth partition point of this pipeline is chosen, and let P; j and D; ;
respectively denote the corresponding cloud expenditure and edge-
cloud data transfer overhead for the jth partition point in time slot
t. According to the system goals, the best partition strategy should
be the one that minimizes the cloud expenditure and edge-cloud data
transfer overhead while maintaining the desired analysis throughput.
Therefore, the problem of finding the best partition strategy for
timeslot ¢ can be formulated as follows:

min Z(Q'Pi,j'xi,j"'ﬂ'Di,j'xi,j)

Xi, j

i, J

2ijCijxij<C

2ij Gij-xij<G (3)
s.t. Zi,j M j-xij <M

Zi,le/j'xi,jSM/

ij,-,j =1, x5;<€{0,1}

where a and f are weights used to make a trade-off between the
two optimization goals. Cj, j, G, j, Mj, j and M] ; are the edge-side
CPU, GPU, memory and GPU memory demand respectively for the
stream query pipeline i to reach the desired analysis throughput if
the jth partition point is chosen. C, G, M, and M’ are the CPU, GPU,
memory, and GPU memory capacity of the edge server. The first
four constraints ensure that the resource demands of all functions
that are scheduled to execute at the edge server do not exceed the
server’s capacity. The last constraint ensures only one partition
point for a stream query pipeline. Note that the solution to the
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problem is the partition strategy that is only valid for timeslot ¢.
The Scheduler will reschedule the partition strategy for timeslot
t+1 as new stream queries may be submitted, and old online stream
queries may be terminated.

3.3.2 Handling Video Content Dynamics. According to our
observations in §2.2, video content dynamics can impact the in-
put workloads of cascaded functions in the same pipeline. This
means P; j, D; j, Ci j, Gj, j, M; j and M{j may vary with the ana-
lyzed video content. Unfortunately, when the Scheduler component
schedules the partition strategy for timeslot ¢, P; j, D; j, C; j, Gy, j,
M;, j and Ml.” j are unknown since the corresponding video con-
tent has not been analyzed yet. In CEVAS, this issue is addressed
by the Predictor component, which is responsible for predicting
these content-dependent variables. Specifically, the Predictor com-
ponent forecasts the resource demand, input data size, and cloud
expenditure of each function in the pipeline.

Formally, for stream query pipeline i, we define c; x (g;, k> m; k.
and m: k) as the CPU (GPU, memory, and GPU memory) demand of
its kth function being executed at the edge server. Let d; ;. denote
the input data size of its kth function and p; ; denote the cloud
expenditure of the kth function being executed in the cloud. Note
that for those content-agnostic variables, we execute offline profil-
ing instead of relying on the Predictor component to predict (e.g.,
the max GPU memory demand of the vehicle detector function).
Additionally, if one kind of edge resource is not used by a function,
we set the corresponding values to 0 (e.g., gi2 and ml’.’2 are set to
0 since the tracker functions do not utilize the GPU resources in
our implementation). With these predicted resource demands and
costs of each function, the Scheduler can easily obtain the values of
P; j,Di j,Ci j, Gi j, Mj j and Mi:j. For instance, for a vehicle query
pipeline processing stream i, C; 3 = ¢;,1 + ¢;,2 and D; 3 = d; 3.

Figure 7 shows an overview of the Predictor component, which
solves an multivariate time series forecasting problem. The com-
ponent predicts input data sizes (data transfer overhead), edge-
execution resource demands, and cloud-execution expenditures in
future timeslots for each serverless function with historical execu-
tion information. As demonstrated in our measurement study §2.2,
the AOPF and AUOPF metrics are capable of characterizing the
video content dynamics, which inspires us to incorporate AOPF
and AUOPF metrics as parts of the Predictor’s inputs. In addition,
the input data size of each function d; i is also included as it is
highly content-dependent based on our measurement. By contrast,
we do not incorporate the historical edge resource demands and
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cloud expenditure of a function in the inputs of the Predictor com-
ponent as we cannot fully obtain values of these variables for each
timeslot. To be specific, if a function is executed in the cloud at
timeslot ¢, its edge resource demands for timeslot ¢ are unavailable.
On the other hand, if it is executed at the edge server, its cloud
expenditure will be unavailable for the timeslot. As a result, the
input variables of the Predictor are historical values of AOPF, and
AUOPF and d; k.

After determining the inputs and outputs of the Predictor com-
ponent, we have to decide which prediction approach to use. There
is a multitude of approaches to solving the multivariate time series
prediction problem. One approach is building traditional autore-
gressive models, e.g., vector autoregression (VAR). Another method
is converting the multivariate time series prediction problem into a
supervised machine learning problem and then applying classical
machine learning models (e.g., Random Forest (RF)) to make predic-
tions. Recent advances in multivariate time series prediction focus
on using various DNNs, such as convolutional neural networks
(CNN) and long short-term memory (LSTM), for prediction.

In our scenario, video queries can occasionally be online and only
executed for a short period, so collecting large training datasets
to train complex models is costly and impractical. Moreover, the
relationship between output and input variables can be very dif-
ferent for distinct stream query pipelines. The differences can be
attributed to the executed pipeline structures (e.g., vehicle pipeline
vs. face pipeline) and the queried video content. Thus, the Predic-
tor has to maintain an independent model for each stream query
pipeline to ensure accurate predictions. As such, the ideal predic-
tion model should be lightweight, accurate, and fast. CEVAS exposes
interfaces for users to specify which prediction models to use. After
experimenting with several different models, we finally choose the
multilayer perceptron model (MLP) in our implementation. Despite
its simplification, it can perform well for our problem.

In our design, the Scheduler component sends the partition strat-
egy to the edge server at the beginning of each timeslot ¢, say at
time T;. This means the Predictor component has to pass the fore-
casting results of timeslot ¢ + 1 to the Scheduler between time T;
and T;4+1. However, when the Predictor begins to make predictions
for timeslot ¢ + 1, the Monitor component may not have received
the execution results of the video chunk that begins to be processed
at time Ty, e.g., the actual values of AOPF and AUOPF for timeslot
t. Hence, when making predictions for timeslot t + 1, the Predic-
tor does not refer to the execution results of timeslot ¢, but only
depends on earlier execution results from timeslot t — hto t — 1,
where h is the reference window size.

Note that the aforementioned solution is valid only when the
execution results of timeslot ¢ — 1 and earlier timeslots have been
received by the Monitor component. Suppose the execution results
of these timeslots have not been received when making predictions
for timeslot t+1. It indicates that the edge server has been experienc-
ing significant delays due to resource contention. In this case, the
Predictor will not perform any predictions but notify the Scheduler
to set the partition points of all online stream query pipelines to 1.
As such, all workloads of timeslot ¢t + 1 are offloaded to the cloud,
and the resource contention of the edge server can be relieved. If
the values of input variables from ¢ — h to t — 1 are not all available
since the stream query pipeline is offline, we say the forecasting
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Figure 7: Overview of the Predictor component.

experiences a cold start. We take the mean historical values of input
variables as the prediction result to address this issue.

3.3.3 Runtime Partition Scheduling. In our design, the models
employed by the Predictor component are trained on datasets that
are collected without multi-tenant pipelines competition. However,
in a multi-tenant environment, the common resource contentions
can increase the resources required to maintain desirable perfor-
mance, especially for CPU and GPU resources. Therefore, once
received the predicted values of ¢; ., g; k. M; k. mlf o Dik and d; g,
the Scheduler component first executes resource demand rectifica-
tionon ¢; . and g; . The Scheduler pessimistically rectifies them
to the max possible values based on rules we empirically obtain.
For example, for the vehicle detector primitive, the CPU time will
increase by 10% in the worst case. After rectification, the Scheduler
calculates the corresponding values of C; j, G, j, Mj, j, Ml.',j, P j
and D; j for each stream query pipeline i.

After these values are determined, the multiple stream query
pipeline optimization problem (3) can be mapped to the multi-
dimensional multi-choice knapsack problem (MMKP) [3]. For MMKP,
there are n groups of items (n online stream query pipelines) and
each group i has [; items (each stream query pipeline i has [; parti-
tion points). Each item in group i (each partition point in stream
query pipeline i) has a value (the objective function value of prob-
lem (3)) and requires m resources (the edge-execution resource
demand). The MMKP allows one to select exactly one item from a
group, which corresponds to scheduling exactly one partition point
for each online stream query. The goal of MMKP is to maximize
the total value of selected items, which is equivalent to maximiz-
ing the opposite of the objective function value of the problem (3).
Although MMKP is an NP-hard problem, several highly effective
heuristics algorithms have been designed for solving it [3, 27, 49].

In our implementation, we choose the algorithm based on con-
structing convex hulls [3]. The running time complexity of this
algorithm is O(nlm + nllog! + nllog n), where n is the number of
online stream query pipelines, m is the dimensions of the edge
resources, and [ is the maximum number of partition points that
a stream query pipeline can have. Fortunately, one stream query
pipeline has only a limited number of partition points in practice,

indicating [ is constant. In addition, the dimension of resources
m we consider in problem (3) is 4. Thus, the time complexity of
the algorithm becomes O(nlogn). Due to the resource-intensive
nature of video analytics pipelines, n will not be too large for a
resource-constrained edge server in practice. If we extend the Con-
troller of CEVAS to schedule for s independent edge servers, the
total scheduling time will be O(snlogn). When n is a small con-
stant, this only costs a linear time. Moreover, from our partition
scheduling experiences for an edge server with a limited number
of online stream query pipelines, brute-force searching can also
provide acceptable performance.

4 SYSTEM IMPLEMENTATION

We prototype CEVAS with a public cloud computing platform: AWS.
The cloud-side implementation is based on AWS’s serverless com-
puting platform: AWS Lambda. We implement each primitive of
video query pipelines in a serverless function using Python lan-
guage and deploy them to the platform. We configure 3008 MB
for all functions and also enable parallel acceleration to deliver
high-performance cloud-side processing. The parallel acceleration
means, for image-based primitives, multiple function instances are
invoked in parallel to accelerate the processing. This is a common
trick to bring serverless’s highly parallelizable superiority into full
play [7, 22]. Thanks to the event-driven programming model of
AWS Lambda, the instance invocation process can be automati-
cally completed by setting appropriate event sources. We resort to
cloud storage services to persist data between cascade functions
that are executed in the cloud. In particular, for object-like data
(e.g., video chunks, frames, and images), we leverage Amazon S3
[46] for transient storage. In contrast, for value data like bounding
box coordinates, we leverage Amazon DynamoDB [19] for tran-
sient storage. We also use Amazon S3 to persistent the states of the
tracker functions.

The edge server is equipped with an NVIDIA GeForce GTX 1080
GPU (with 8 GB memory), 12-core Intel Core i7-6850K CPU, and 32
GB of RAM. It runs Ubuntu 18.04 LTS. To extend the execution of
AWS Lambda functions to the edge, we install AWS IoT Greengrass
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Core SDK [9] on the edge device. For deployment, we create the cor-
responding edge-version Lambda function for each cloud-version
Lambda function and deploy the edge-version functions to the edge
server with AWS IoT Greengrass. The Controller is an off-the-shelf
host (without GPU) installed AWS IoT Device SDK [8] to enable
efficient and secure communication with Lambda functions on the
edge server and in the cloud.

There is an additional stream ingestion Lambda function for each
stream query pipeline at the edge server, which is responsible for
kicking off the pipeline execution. Specifically, at the beginning of
each timeslot, the Controller invokes the stream ingestion function
for every online stream query pipeline with the pipeline partition
point message. The stream ingestion function checks the partition
point. It uploads the video chunk to be processed to Amazon S3 if
the partition point is 1 (i.e., executing the whole pipeline on the
video chunk in the cloud). Otherwise, it invokes the first function
of the edge-version pipeline with the partition point message.

After processing the input workload, with the passed-in par-
tition point message, the upstream function in the edge-version
pipeline decides to invoke the edge-version subsequent function
or the cloud-version subsequent function. If the edge-version is
selected, the execution results and partition point message are
both passed to the subsequent downstream function. Conversely,
if the cloud-version is selected, the execution result is passed to
the cloud-version subsequent downstream function. The execution
information required by the Controller (e.g., AOPF) will also be
sent from Lambda functions to the Controller if necessary. All mes-
sages are passed with the support of the corresponding AWS SDK
through the MQTT protocol [1].

5 EVALUATION

In this section, we first describe the experiment setup. We then
introduce the performance metrics and alternative schemes that
are used for comparison. Finally, we show the experimental results.

5.1 Experimental Setup

Video Dataset: We obtain the evaluation dataset from the real-
world camera streams where we collected our measurement datasets
(shown in Table 2). Two video clips from the Crossroad camera
stream and three video clips from the Restaurant camera stream
are collected, and the length of each video clip is one hour. During
experimentation, we stream these five pre-recorded video clips at
the frame rate and resolution shown in Table 2 to the edge server,
mimicking a multi-stream scene, where five cameras connect to
the edge device: two cameras installed at busy crossroads, and the
other three installed in stores or at the entrance. We choose to
use pre-recorded videos rather than live streams to cover more
complicated and challenging scenes.

Video Queries: Users can issue vehicle queries on the two Cross-
road streams (indexed as stream query pipeline Q1 and Q2 respec-
tively) and face queries on the three Restaurant streams (indexed as
stream query pipeline Q3, Q4, and Q5, respectively). We implement
and deploy these query pipelines as serverless function pipelines
according to specifications in Table 1. In particular, to create a more
complicated edge resources contention environment, we restrict the
stream query pipeline Q4 and Q5 to use CPU merely. It means the

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

edge-version face detector functions analyzing these two streams
rely on CPU rather than GPU for DNN inference.

Pre-trained Prediction Models of the Predictor Component:
As the prediction model should be lightweight, accurate, and fast,
we choose the MLP model with one hidden layer to achieve the goals.
We pre-trained an MLP model for the vehicle query pipeline on a 4-
hour length clip of the Crossroad stream. We also pre-trained a GPU-
version and a CPU-version prediction model for the face pipeline
on a 6-hour length clip of the Restaurant stream. For simplification,
the model architecture and hyperparameters are consistent for all
stream query pipelines. The inference window size is 8, i.e., all
models leverage the values of input variables from timeslot ¢ — 8 to
timeslot ¢ — 1 to predict the values of output variables at timeslot
t + 1. We tested the pre-trained models on the aforementioned
evaluation dataset. The mean Root Relative Squared Error (RRSE)!
of the pre-trained models is 0.064, and the mean inference time of
processing an input sample is 0.028 CPU seconds.

5.2 Evaluation of CEVAS

Performance Metrics: To verify the effectiveness and efficiency
of CEVAS, we define the following evaluation metrics.

o Throughput. CEVAS is a live video analytics system that analyzes
videos as they are being recorded. As videos are being analyzed,
the query results are accordingly updated. If the analysis rate
cannot keep up with the incoming video data rate, the system
will experience accumulated lags. The throughput metric is in-
troduced to quantify if systems can achieve real-time analysis.
Specifically, if a video stream is analyzed at a rate equal to its
recorded frame rate, we say its throughput is 100%. Otherwise,
the throughput is the percentage of the analysis frame rate over
the recorded frame rate of the video stream. For example, for a
10 FPS video stream, 50% throughput means analyzing the video
stream at 5 FPS, and in this case, the accumulated lag of the
stream will be 2x its streamed duration.
Cloud expenditure. The money paid for executing cloud-side
serverless functions. CEVAS allows users to specify the compute
method of this metric. In the evaluation, the values of this metric
are computed based on the latest pricing strategy of AWS Lambda
[6]. Note that this expenditure only involves the money paid for
function execution and does not include the money paid for
other cloud services (e.g., Amazon S3) to orchestrate serverless
functions. This is because there are alternative ways to achieve
function orchestration, and the orchestration cost depends on
developers’ specific implementation choices.

o Transferred data. The amount of data transferred between the
edge server and the cloud, indicating how much network traffic
is consumed.

o Cost. This is a composite metric of the transferred data metric and
the cloud expenditure metric, and it is the optimization objective
of Problem (3). By setting « and 8, we can normalize the units
of transferred data and cloud expenditure to US dollars. Unless
otherwise noted, we assume the money paid for transferring 1
GB data from the edge to the cloud is $0.1. Then we calculate the
value of the cost metric by setting @ = 1 and f = 0.1.

[e]

!RRSE [37] is a normalized version of Root Mean Square Error (RMSE) that is employed
to provide more readable results by eradicating the influence of data scale.
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Baselines: We compare CEVAS with the following baselines:

o PureCloud. For this scheme, the camera streams being queried
at a timeslot will be forwarded to the cloud for analysis. The
edge server acts as a router, and no analytics will be executed
on it. Assume the edge server has reserved sufficient bandwidth
to support real-time video streaming to the cloud. Based on our
current implementation of the cloud-side serverless pipelines, as
long as the video streams can reach the cloud in real-time, they
will be analyzed in real-time. This means the throughput of this

scheme is always 100%.

PureEdge. All online stream query pipelines are executed at the

edge server. No data is forwarded to the cloud. Hence, the cloud

expenditure and transferred data of the scheme are always 0.

o SVESC. This is a Slim version of VideoEdge [30] with Serverless
Computing supports (SVESC). VideoEdge is a status quo VM
cluster-based cloud-edge collaborative video analytics system.
Video configuration knobs such as resolution and frame rate are
fixed in this slim version, and we only tune the placement of
primitives in a pipeline. To make this scheme more comparable
to CEVAS, we re-implement it based on serverless functions. The
main difference between this scheme and CEVAS lies in adapting
to the video content dynamics or not. This scheme assumes that
video content has minor influences on resource demands and
costs. It leverages a small video sample as a representative to
profile the edge resource demands, input data size, and cloud
expenditure of each primitive in a pipeline. Then, it finds the
partition strategy for each timeslot based on the same offline
profiling results. In the evaluation, we select the first 5-second
video chunk of each video stream as its representative sample.

o

5.2.1 Performance Improvement. We first present the experimental
results of executing all five stream query pipelines concurrently
for one hour (i.e., 720 timeslots). Figure 8 shows the throughput of
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ure are accumulated CPU times for analyzing one-minute
length queries. The abnormal value of the Predictor compo-
nent in minute 1 is caused by cold start (details in §3.3.2).

each stream query pipeline in one hour. It can be seen that with
constrained edge resources, the PureEdge scheme cannot catch up
with the input frame rate and suffer significant accumulated lags.
In contrast, all schemes that can access the cloud resources achieve
real-time analytics. To be specific, with the cloud-edge collaboration,
CEVAS and SVESC both improve the analytics throughput by up to
20.6% compared with the PureEdge scheme.

Figure 9 demonstrates the transferred data and cloud expen-
ditures of all these schemes. Due to the lack of edge computing,
the PureCloud scheme transfers nearly 2.2 GB data from the edge
server to the cloud. Meanwhile, it costs about 7.1 US dollars to
analyze the videos with AWS Lambda. By introducing cloud-edge
collaboration and judiciously adjusts the partition points of online
stream query pipelines, CEVAS reduces about 74.4% cloud-edge data
transfer overhead and 86.9% cloud expenditure of the PureCloud
scheme. This observation suggests that CEVAS can achieve real-time
video analytics with only a small cost.

We can verify CEVAS’s capability of handling video content dy-
namics by further comparing its performance with the content-
agnostic SVESC scheme. Although these two schemes both achieve
real-time analytics, compared to the SVACES scheme, CEVAS reduces
its data transfer overhead by about 31.4% and cloud expenditure by
about 30.9% (as shown in Figure 9). Unlike the SVESC scheme that
employs one partition strategy for all timeslots, CEVAS can timely
adjust its partition strategy according to its sensed fine-grained
content variations. In fact, during the 720 timeslots of the experi-
ment, 250 partition strategy updates are made by CEVAS to adapt to
the fine-grained video content dynamics.

5.2.2  System Overhead. The primary system overhead of CEVAS is
incurred by the Predictor and Scheduler components of its Controller.
We measurement the CPU resource consumption of these two com-
ponents of executing five stream query pipelines concurrently for
one hour and show the results in Figure 10. It can be seen that in
one minute, CEVAS consumes only about 1.8 CPU seconds to predict
the resources and costs for all online stream query pipelines. Mean-
while, it only takes about 1.2 CPU seconds for CEVAS to find out the
partition strategy. The overheads are minor for our Controller (one
off-the-shelf host, details in §4). This indicates the system design of
CEVAS is highly efficient and incurs minor overheads, which also
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Figure 11: Scalability and Adaptability of CEVAS. The missing
throughput values from minute 47 to minute 49 indicate that
the system is idle, i.e., no online stream queries.

provides possibilities for CEVAS to work efficiently for massively
concurrent video queries and a multitude of edge servers.

5.2.3 Scalability and Adaptability. In a real-world scenario, users
can issue a query at any time according to their own needs, leading
to an unpredictable usage pattern and system load pressure for the
edge server. To validate the performance of CEVAS under unpre-
dictable and bursty input workloads, we formulate the arrivals of
stream queries as a Poisson Process with a mean interarrival time
of 12 minutes (i.e., 144 timeslots). The service time of each query
is randomly selected from three options of 1 minute, 10 minutes,
and 20 minutes. If a newly arrived stream query is already being
executed (i.e., multiple arrived stream queries have overlapping
time intervals), we simply merge the time intervals of the queries
to ensure that one video chunk is only analyzed once by the same
pipeline. Figure 11a shows one generated usage pattern. In this
figure, colorized cells for a stream query represent that the stream
query is online at the corresponding timeslots.

Figure 11b shows the performance of CEVAS under the usage
pattern shown in Figure 11a. The throughput shown in Figure 11b
is the average of the throughput of all online stream queries in
the corresponding minute. It should be noted that according to
our definition, the throughput for a stream query cannot exceed
100%. This means only when all online stream queries have a nearly
100% throughput, the average throughput shown in Figure 11b is
nearly 100%. As can be seen, no matter what kind of system load
pressure, CEVAS always keeps high analytics throughput. When
there are sufficient resources to handle the input workloads at the
edge, no serverless functions are executed in the cloud, and the cost
values are zero (e.g., from minute 21 to minute 35). On the other
hand, when the edge server is handling heavy input workloads (e.g.,
from minute 6 to minute 11), CEVAS smartly pushes partial of the
workloads to the cloud to maintain a high throughput for all online
stream queries.
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6 RELATED WORK

One-side video analytics systems: Single data center resource
management has been discussed by several existing video ana-
lytics systems. The core technique used by them is balancing be-
tween resource and accuracy by adjusting general configuration
knobs such as frame rate, resolution, and DNN models. For instance,
VideoStorm [55] profiles the resource demand and accuracy of dif-
ferent knob combinations for each query offline and then adjusts
configuration knobs for queries according to their quality and lag
goals online. Chameleon [34] leverages the underlying temporal
and spatial correlation to amortize frequent profiling costs incurred
by adapting configuration knobs to the ever-changing video con-
tent. In contrast to these pure data center systems, Mainstream [33]
focuses on multi-tenant video processing on a fixed-resource edge
device. It automatically trades off between per-frame accuracy and
frame processing throughput by dynamically tuning the degrees of
DNN stem-sharing among concurrent applications. Unlike these
cloud-only or edge-only systems, the cloud-edge collaborative ar-
chitecture of CEVAS can effectively address the constrained edge
resources or scarce network bandwidth challenges.

Collaborative video analytics systems: Vigil [56] is a real-
time wireless video surveillance system that executes lightweight,
stateless vision algorithms at the edge to prevent unrelated frames
from being uploaded to the cloud and thus save wireless capacity.
As compute-intensive DNN models gain popularity, DeepDecision
[43] considers offloading a deep learning model from weak front-
end devices (e.g., smartphones) to powerful backend helpers (e.g.,
edge servers/cloud). It adjusts the general configuration knobs (e.g.,
frame rate, bitrate) together with the placement knob (smartphone
or edge/cloud processing) to achieve real-time and high-accuracy
analytics. VideoEdge [30] harnesses the same configuration knobs
tuning technique to allocate hierarchical clusters resources among
concurrent video query pipelines to strike the desirable balance be-
tween resource demand and accuracy. Although VideoEdge solves
the same multi-queries partitioning problem as CEVAS, it relies on a
one-time offline resource profiling that cannot capture the content-
dependent resource demand variations.

Serverless video processing: With the development of server-
less computing, several efforts have been made to apply it for video
processing tasks. For example, based on AWS Lambda, ExCamera
[22] provides a general-purpose fine-grained parallel computation
framework and further implements a low-latency serverless video
encoder. Sprocket[7], a serverless video processing system, deliv-
ers high parallelism, low-latency, and cost-effective processing by
leveraging the intra-video parallelism. Yet, both of them are pure
cloud-based video processing systems that are more suitable for
batch processing workloads. Different from these works, CEVAS
attempts to introduce serverless computing into cloud-edge collab-
orative systems to unlock the potential of serverless computing in
achieving scalable real-time video analytics.

7 DISCUSSION AND FUTURE WORK

Adaptation for more complicated DNN models: In our current
prototype, we implement a computer vision primitive (e.g., object
detector) as a standalone serverless function. However, a server-
less function’s resources may be insufficient to support real-time
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inference for resource-intensive DNN models, especially for those
taking a video sequence as inputs (e.g., models typically developed
for action recognition tasks [15]). For example, the maximum con-
figurable memory size for a cloud function in AWS Lambda is 10
GB, and there is a lack of hardware accelerator support [10].

The easiest way to enable CEVAS to address this issue is DNN
model splitting [20, 29, 41]. To be specific, we can split a large DNN
model into multiple parts and implement each part with a serverless
function. Consequently, one function with a large DNN model is
converted to multiple cascaded functions with partial model layers
and reduced resource demands. From the perspective of CEVAS, the
only difference is that the converted pipeline has more cascade
functions, which is still addressable. Although beyond the scope of
this work, decoupling a monolithic video analytics application into
a serverless pipeline is an exciting topic worth further exploration.

Adaption for network bandwidth: In this work, we assume
sufficient bandwidth is provisioned for the edge server to stream
videos to the cloud in real-time, i.e., the network bandwidth is not
the bottleneck of the entire system. Although large organizations
or entities provision dedicated network links for their video ana-
lytics systems, small businesses or personal users may resort to
public or wireless networks to reduce costs. Unfortunately, wide-
area network (WAN) bandwidth has proved to be scarce, variable,
and expensive [54]. The network conditions between edge servers
and clouds or even between cameras and edge servers can be highly
unstable. In order to adapt to the network bandwidth variations,
jointly optimizing the cloud-edge partition strategies with other
pipeline configuration knobs (e.g., input frame rates, primitive
model choices) can be necessary to achieve the most benefits. The
key to realizing desirable performance goals is trading off between
analytical throughput, accuracy, and cloud expenditure. This shows
non-trivial challenges, and we leave this for future work.

Collaborations between edge servers: In our scenario, edge
servers can be any devices that have onboard computation resources
and are located in the proximity of cameras. Compared with clouds
that can provide virtually unlimited resources, edge servers have
physically constrained resources that tend to be heterogeneous. By
enabling collaborations between individual edge servers and the
cloud, CEVAS breaks the limitation of individual edge server’s re-
sources at the cost of cloud-edge network bandwidth consumption
and additional cloud expenditure. Despite this, there is still room
for improvement by further integrating resources at the edge.

A recent study has shown that cameras’ workloads have a sub-
stantial heterogeneity [32], which will lead to heterogeneous work-
loads for edge servers. This creates possibilities for edge servers
to share resources. For instance, a function running on an over-
loaded edge server can be rescheduled to run on a nearby idle server,
thus improving the resource efficiency and scalability of the en-
tire system while reducing cloud expenditure. Despite the promis-
ing prospects, introducing collaborations between edge servers
also introduce new challenges. For instance, how to orchestrate
serverless pipelines across geo-distributed infrastructures; how to
strike throughput-cost trade-offs between local execution, peer-
edge-server execution, and cloud execution. Overall, introducing
collaborations between edge servers in CEVAS is an interesting fu-
ture research direction.

M. Zhang et al.

8 CONCLUSION

In this paper, we present a cloud-edge collaborative serverless video
analytics system CEVAS. By judiciously integrating the cloud and
edge resources, CEVAS overcomes the drawbacks of pure cloud
or pure edge schemes, realizing scalability and cost-effectiveness.
To address the fundamental challenges in designing such a cloud-
edge collaborative online video analytics system, CEVAS introduces
serverless computing for fine-grained and flexible resource man-
agement. In particular, by leveraging video content-aware fore-
casting and fine-grained workload-aware runtime scheduling, the
Controller of CEVAS solves a cloud-edge partitioning problem for
multiple concurrent serverless pipelines with ever-changing input
workloads. Experiments on AWS show that CEVAS can significantly
reduce the data transfer overhead and cloud expenditure while
maintaining high throughput. It is also more adaptive than the
content-agnostic cloud-edge collaborative scheme.
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