
1

Federated Analytics Informed Distributed Industrial
IoT Learning with Non-IID Data

Zibo Wang, Yifei Zhu, Member, IEEE, Dan Wang, Senior Member, IEEE, and Zhu Han, Fellow, IEEE..

Abstract—The increasing concerns of communication over-
heads and data privacy greatly challenge the gather-and-analyze
paradigm of data-driven tasks currently adopted by the industrial
IoT deployments. The federated paradigm resolves this challenge
by performing tasks collaboratively without uploading the raw
data. However, the inherent data heterogeneity (skewness) of
diverse industrial IoT data holders significantly degrades the
performances of all kinds of federated industrial IoT learning
tasks. Quantifying this skewness is non-trivial and cannot be
solved by the existing federated learning techniques. In this paper,
we propose a Federated skewness Analytics and Client Selection
mechanism (FedACS) to quantify the data skewness in a privacy
preserving way and use this information to help downstream fed-
erated learning tasks. FedACS provably estimates the skewness of
the clients using the Hoeffding’s inequality based on the distilled
insights of edge data in the form of gradient. It then gracefully
handles the drifting estimation and robustly selects clients with
milder skewness using a novel dueling bandit approach. FedACS
gains advantages in privacy preservation, infrastructure reuse,
and optimized overheads. Extensive experiments on open datasets
demonstrate that FedACS reduces the accuracy degradation by
∼78.2%, and accelerates the FL convergence for ∼ 2.4×.

Index Terms—federated analytics, data heterogeneity, feder-
ated learning, dueling bandit

I. INTRODUCTION

THE deployment of industrial IoT (IIoT) devices grows
exponentially in recent years. As is reported by S&P

Global, 86.7 million IIoT devices were deployed in the world
in 2020, with 244 exabytes (million terabytes) data generated,
and the values are expected to be 152 million and 725 exabytes
in 2025 [2]. This huge volume of data after being exploited
by artificial intelligence and data science algorithms reveals
valuable insights and helps a broad range of verticals in
the field of IIoT, such as smart manufacturing, smart city,
etc [3]–[5]. Traditionally, the raw edge data from these IIoT
devices are firstly gathered to a central server, where complex
training and analytic algorithms are further applied. However,
the traditional paradigm introduces significant communication
overheads as the amount of data exponentially increases at

This work is funded by the SJTU Explore-X grant. This work is partially
supported by NSF CNS-2107216 and CNS-2128368.

A prior version of this article was presented at the IEEE/ACM International
Symposium on Quality of Service (IWQoS 2021) [1].

Z. Wang and Y. Zhu are with UM-SJTU Joint Institute, Shanghai Jiao Tong
University, Shanghai, China; e-mail: {wangzibo,yifei.zhu}@sjtu.edu.cn.

D. Wang is with Department of Computing, The Hong Kong Polytechnic
University, Hong Kong, China; e-mail: csdwang@comp.polyu.edu.hk.

Z. Han is with the Department of Electrical and Computer Engineering
at the University of Houston, Houston, USA, and also with the Department
of Computer Science and Engineering, Kyung Hee University, Seoul, South
Korea; e-mail: zhan2@uh.edu.

The corresponding author is Y. Zhu.

the edge. In addition, laws and regulations are established in
recent years to restrict the gathering and usage of raw data,
such as GDPR [6] in Europe and CPPA [7] in California, in
response to the increasing awareness of privacy.

Supported by edge computing techniques and the increasing
awareness of data privacy, the federated paradigm is proposed
to conduct the data-oriented tasks collaboratively without
uploading the raw data. In this novel paradigm, raw data are
no longer gathered by any central server. Instead, selected
clients1 receive calculation models from the server, perform
data-oriented host tasks based on its local data, and upload
the abstracted results back to the server. After that, the server
aggregates the results and pushes forward the host task. The
host task eventually achieves a comparable performance like
those conducted in the traditional centralized paradigm after
multiple iterations.

Unlike traditional distributed computation scenarios, where
the data and hardware can be carefully configured, hetero-
geneity, especially data heterogeneity, naturally arises in the
IIoT settings. For example, we consider anomaly detection of
industrial sensors. Anomaly events can be recorded by a few
sensors in some plants, while other sensors in other plants only
record normal events. Collaborative model training in such a
data heterogeneous environment can have lower accuracy and
slower convergence rate [8], [9]. Due to the prohibition of
accessing raw data, the severity of the heterogeneity in the
clients is unknown to the central server. If we can design a
federated mechanism to measure the data heterogeneity of the
clients, this derived knowledge can help improve the efficiency
of the host federated task without uploading the raw data.

The earliest and the most studied instance of the federated
paradigm is federated learning (FL), where clients collaborate
on neural network training without sharing the raw data [10].
Due to the wide interest of deep learning, FL has demonstrated
its capability in predictive tasks like object detection [11]
and word prediction [12]. The FL solutions are also widely
applied in the field of IIoT [13]. However, including the data
heterogeneity quantification task we are interested to solve,
there remain many descriptive data science problems like
heavy hitter discovery, data sketching, distribution estimation,
etc., which are not suitable to be solved by neural networks.
In these problems, the studied questions are no longer simply
“how to collaboratively train a model to do the predictive
task”, but rather “what is the most frequent word used by
users?”, “how data in a client are beneficial for the host
federated task?”, etc. With the introduction of stricter privacy

1We use edge device and client interchangeably in this paper

2

requirements, these equally important tasks call for a federated
solution as well.

Considering the equal importance of these tasks, federated
analytics (FA) is proposed by Google in May 2020 to fill the
vacancy of data science tasks’ federation [14]. While FA shares
the same federation characteristics with FL, following the pat-
terns of local model computation, central model aggregation,
and interactive updates, it intrinsically differs itself from FL in
its ultimate goal and the task-varying design details. FL targets
training neural networks, while FA targets performing non-
training data analytics tasks. Due to the diverse data analytics
tasks, the design details also vary. For example, in an FA-based
heavy hitters discovery, a prefix tree serves as the model; the
local computation is adding a leaf to the tree; the aggregation
is updating the tree with high-support leaves [15]. In another
FA-based clustering work, the local computation is hashing
their local data to form a binary vector; the central aggregation
is to assign the clients with identical (or similar) vectors into
the same cluster; [16]. Though a variety of data analytic tasks,
e.g., calculating histogram [17], frequent pattern mining [18],
clustering [19], have been proposed, data skewness analysis
have not been studied yet.

In this paper, we present the first work on characteriz-
ing the class distribution heterogeneity in federated systems
and use this insight to create a desirable data environment
via intelligent client selection2. Unlike learning an unknown
probability distribution from random samples or manually
selecting features to heuristically determine a client’s data
heterogeneity, we use the term skewness3 to describe the
severity of the local class distribution of a client skew from
the global, virtually centralized, one and aim at gaining a
provable estimation on it. Specifically, we propose a joint
Federated skewness Analytics and Client Selection mechanism
(FedACS). FedACS is a typical instance of FA, where clients
generate insensitive insights about their local data, and the
server aggregates the insights to infer the skewness of each
client. FedACS can either be treated as a stand-alone analytic
design or integrate with other federated tasks. We further
integrate FedACS with FL to help distributed IIoT training,
and fully demonstrate its potential and effectiveness. FedACS
has three modules: insight derivation, skewness estimation,
and client selection. The insight derivation part is designed
to share the computation and communication with the host
task, so that the infrastructure is reused and the communication
is saved. In the skewness estimation part, the Hoeffding’s
inequality is employed to bridge the aggregated insights and
the client skewness. In the client selection part, facing the
drifting estimations of the skewness level, we adopt a dueling
bandit solution to robustly select clients. The three modules
are executed iteratively, enabling FedACS to accurately lock
on the clients with low skewness and to help the host FL task
achieve higher accuracy and faster convergence.

In summary, our contributions are:

2We will make the implementation open source.
3Note that skewness has a different definition in statistics. In this paper, we

follow a similar definition to describe the label distribution skew as in [10]
and [8].

• To the best of our knowledge, this is the first work on
federated data skewness analytics in decentralized data
environments.

• Our proposed analytic mechanism measures the skewness
of clients in a mathematical provable way with the power
of the Hoeffding’s inequality, and guarantees the data
privacy at the same time.

• Facing the drifting skewness information, we novelly
formulate the client selection problem as a dueling bandit
problem. Our proposed solutions successfully balance the
trade-off between sample size and data quality, greatly
improving the FL performance.

• Extensive experiments under different data heterogeneity
environments show that, FedACS-assisted FL reduces ∼
78.2% of accuracy degrading, speeds up the convergence
for ∼ 2.1×, and outperforms existing methods tackling
data heterogeneity in FL, with negligible overheads.

The rest of this paper is organized as follows: in Section
II, the background knowledge of our work is reviewed. In
Section III, we model the data heterogeneity under different
situations and demonstrate its harm to model training. Section
IV gives an overview of FedACS. Two major components of
FedACS, federated skewness estimation and client selection,
are elaborated in Sections V and VI, respectively. In Section
VII, experiments and results are presented. Related work
is surveyed in Section VIII, followed by the conclusion in
Section IX.

II. PRELIMINARIES AND BACKGROUND

In this section, we briefly introduce several important con-
cepts and tools that we use in our work.

A. Federated learning and analytics
Federated learning and analytics refer to the process of

multiple clients collaborating to solve data-oriented problems
without sharing their raw data [20]. FL is a distributed learning
framework to collaboratively train a neural network [10].
An FL process works in an iterative way. Each iteration
has four phases: model distribution, local training, model
upload, and model aggregation. In each iteration, the selected
clients train the global neural network with its local data, and
then let the centralized server aggregate the neural networks.
In FA, distributed stored data is exploited for non-training
data science services. It retains advantages of the federated
paradigm, such as privacy preservation and communication
efficiency.

B. Hoeffding’s inequality
The Hoeffding’s inequality is a statistical tool first intro-

duced in [21]. It estimates the deviation of the average of
independent random variables from its exception and provides
a probabilistic bound for it.

Hoeffing’s Inequality: Supposed -1, ..., -= are independent
variables, -8 ∈ [08 , 18], ∀8 ∈ [1, =], - is the average of -8 ,
there’s

P(|- − E(-) |) ≥ n) ≤ 24G?
(
− 2n2=2∑=

8=1 (18 − 08)2

)
. (1)

3

0.0 0.2 0.4 0.6 0.8 1.0
0

25

50

75

100

125

150
Nu

m
be

r o
f c

lie
nt

s

(a) Uniform skewness environment

0.0 0.2 0.4 0.6 0.8 1.0
0

25

50

75

100

125

150

Nu
m

be
r o

f c
lie

nt
s

(b) Inverse Pareto skewness environment

 =
 2

0.0 0.2 0.4 0.6 0.8 1.0

 =
 0

.1

(c) Dirichlet skewness environment

Fig. 1. Skewness of clients under different non-IID data environments.

C. Dueling bandit

Dueling bandit is firstly introduced in [22]. It considers
a different scenario than conventional stochastic multi-armed
bandits (MAB). In the dueling bandit, a bandit receives infor-
mation about noisy comparison (dueling) of arms. For each
pair of arms 08 and 0 9 , the probability for 08 to be stronger
than 0 9 :

P(08 � 0 9) = q(08 , 0 9) +
1
2
, (2)

where q(08 , 0 9) denotes the stochastic preference between 08
and 0 9 . In conventional dueling bandit [22], only two arms
are selected to perform one duel in each round. The goal of
the bandit is to find the Condorcet winner, denoted as 0∗,
which can beat all other arms with a probability higher than
0.5. Namely, dueling bandit aims to minimize the cumulative
regret after) plays:

') =

)∑
C=1

max
(
q(0∗, 0 (C)

8
), q(0∗, 0 (C)

9
)
)
. (3)

Multi-dueling bandit is an extension of conventional dueling
bandit, where simultaneous dueling of multiple arms are
allowed [23].

III. SKEWNESS HURTS: A CASE STUDY

In this section, we first present a set of models to formalize
and quantify distribution skewness in the real world in Section
III-A, and then demonstrate the degradation effect of data het-
erogeneity on FL based on our designed skewness description
models in Section III-B.

A. Non-IID environments modelling

To evaluate the performance of federated learning in non-
IID environments, previous works usually synthesize the
dataset to let each client possess a small number of classes
(one class or two classes only) [8], [24]. As an improvement
of this simple approach, researchers in [25], [26] let one or
two classes fill the majority (e.g. 80%) of raw data. Since
the Dirichlet distribution generates a random vector with an
invariant sum, which can be transformed into class distribution,
another branch of works also employ the Dirichlet distribution
to generate non-IID environments recently [27], [28].

However, all these approaches fail to capture the heteroge-
neous skewness situation in the real world. If all clients have
one or two classes fill up the majority (or even all) of their data,
their skewness is exactly similar. Though the lately adopted
Dirichlet distribution approach slightly diverges the skewness
across clients, the skewness of clients is still closed to each
other when the concentration parameter is fixed. In practice,
the skewness of clients is not only different, but also heavily
diverges. For example, the monitoring result of an ordinary
factory is likely to cover a wide range of events. Meanwhile,
the result of an unmanned factory tends to be much more
skewed.

To fully capture the heterogeneity at the client side, we
model the non-IID environment in two steps. We first model
the client-level class distribution heterogeneity similar to
other’s work. We then diverge the key parameters that de-
termine the skewness of each individual client, so that clients
have different skewness at the population level.

Specifically, at the client level, we first generalize the
existing heterogeneity settings and introduce the definition of
the U-dominance client and V-Dirichlet client.

Definition 1 (U-dominance client). An U-dominance client has
the portion of U of the data that belongs to a dominant class,
while the rest is evenly partitioned in all classes (including
the dominant class).

The definition of the U-dominance client is a generalization
of those in [25], [26]. Though U-dominance still has limited
expressibility, it allows us to quantify and compare the skew-
ness of clients, which is beneficial for our future evaluation
part. For example, if we assume that there are ten classes in
total, one 0.5-dominance client with 100 data means that it has
55 data belonging to the dominant class, and 5 data for each
remaining class. As can be seen, assuming that all classes are
evenly distributed in the global data, a 0-dominance client is
also an IID client. With this definition, the skewness of clients
can be easily quantified, that low U indicates low skewness,
and vice versa.

Following the approaches used in [27], [28], we also intro-
duce another client-level class distribution definition called the
V-Dirichlet client.

Definition 2 (V-Dirichlet client). An V-Dirichlet client has
the class distribution following the Dirichlet distribution, with
concentration parameter V.

4

0 200 400 600 800 1000
Communication Round

45

50

55

60

65

70
Te

st
 A

cc
ur

ac
y

(%
)

IID
Uniform
Inverse Pareto
Dirichlet

Fig. 2. Test accuracy v.s. communication rounds on different skewness
environments.

The Direchlet distribution can be seen as a multivariate gen-
eralization of a Beta distribution. Denote the class distribution
of a client as a vector G with dimension 3 (also the number
of classes), the probability of G can be measured as

?(G) ∝
3∏
8=1

G
V−1
8

. (4)

A V-Dirichlet client is provided more freedom on the class
distribution, and is therefore more difficult to quantify and
compare its skewness. However, there also exists a weak
relationship that a client with a higher V is likely to be less
skewed.

Based on these two client-level skewness definitions, we
then define three population-level skewness environments as
follows, which model the diverse skewness situation across
different clients.

Definition 3 (Uniform skewness environment). In an uniform
skewness environment, all clients are U-dominance clients, and
the value of U of each client is a random variable following
continuous uniform distribution in the range of [0, 1].

Uniform skewness environment defines a comparatively
mild skewness environment with the client skewness parameter
U uniformly distributed in its domain.

Definition 4 (Inverse Pareto skewness environment). In an
inverse Pareto skewness environment, all clients are U-
dominance clients. For each client, we first sample G from
truncated Pareto distribution with shape parameter B and
domain [1, 2]. Then, we assign the value of U to be 2 − G.
The resulted PDF of U is

P(U) = B(2 − U)−B
1 − 2B

, U ∈ [0, 1] . (5)

The inverse Pareto skewness environment is based on the
Pareto distribution, a powerful tool in describing scientific and
social observable phenomena [29]. Particularly, we use the
truncated Pareto distribution, which is with a more practical
form, and inverse it to force the values of U biased to 1 to
simulate a more heavily skewed scenario.

The previous two skewness environments are both based on
Definition 1. The next skewness environment, named Dirichlet
skewness environment, is based on Definition 2.

Definition 5 (Dirichlet skewness environment). In a Dirichlet
skewness environment, all clients are V-Dirichlet clients. Half
of the client has V values following continuous uniform
distribution in range (0, G<43], and those of the rest clients
are in range (G<43 , G<0G].

In the Dirichlet skewness environment, the values of V fol-
low a layered uniform distribution with median and maximum
predefined. The rationale of our setting is that the change of
skewness is not “linear” with the change of V, e.g. if we change
V from 0.2 to 0.1, the change of client skewness, is much more
violent than when changing V from 2.1 to 2.0. By layering V,
we prevent the case that the majority of the clients still have
similar skewness.

We visualize three previously defined environments for bet-
ter understanding as shown in Fig. 1. For the uniform skewness
environment and the inverse Pareto skewness environment,
since the clients are quantifiable via U, we sample 1,000 clients
and create a histogram of their skewness with 20 bins. For the
Dirichlet skewness environment, where the control on skew-
ness is indirect, we show the class distribution of 20 clients,
with two values of V, as a demonstration. Compared with the
uniform skewness environment in Fig. 1(a), for the inverse
Pareto skewness environment in Fig.1(b), the distribution of U
is biased to 1.0, and therefore it is generally more heavily
skewed. In Fig. 1(c), colors represent classes of raw data,
and each row describes the class distribution of classes in one
client. We can see that a V-Dirichlet client with a higher value
of V is less skewed.

B. Harm of data heterogenity on FL

To study the degrading effect of the skewed clients, the
performance of FL on these skewness environments is mea-
sured. CIFAR-10 dataset [30] are used in our experiments. We
adopt the same structure of CNN as suggested in [31]. 50,000
training samples are evenly distributed to # = 200 clients, with
the class distributions controlled by the definitions above. In
each round, the portion of clients being selected C = 0.05, the
number of local epoch � = 5, and local batch size � = 50.
Learning rate W = 0.1, and learning rate decay of each local
epoch W3 = 0.9993.

As is shown in Fig. 2, all three skewness environments
degrade the performance of FL, compared to the IID baseline.
The terminal test accuracy of the uniform skewness envi-
ronment, the inverse Pareto skewness environment, and the
Dirichlet skewness environment are decreased for 3.6%, 6.7%,
and 4.9%, respectively. The degrading effect of the inverse
Pareto environment is more severe than that of the uniform
environment, since it is more heavily skewed. The Dirichlet
environment has a moderate degrading effect.

IV. FEDACS: AN OVERVIEW

In this section, we introduce the overall structure of FedACS
after integrating with FL. In this system, each client is in
charge of performing the local training phase in FL and the in-
sight derivation phase in FedACS. The server in the federated
systems is free to choose a subset of all available clients to

5

Model distribution1

Insight derivation2

Insight upload
3

Skewness estimation
4

Client selection
5

FedACS server

Client

(a) Workflow of FedACS

Model distribution1

Insight derivation2

Local training2

Insight upload
3

Model upload
3

Skewness estimation
4

Model aggregation
4

Client selection
5

FL server

FedACS server

Client

(b) Workflow of FedACS assisted FL (The sharing modules are in green
shade)

Fig. 3. An overview of FedACS and FedACS assisted FL. Insight derivation and skewness estimation modules are demonstrated in Section V, and client
selection module is demonstrated in Section VI.

participate in each round. The clients have different intrinsic
data skewness. Therefore, the benefit provided by each client
varies. To maximize the overall benefit, the server wants to
let clients with low skewness participate more frequently, and
reduce the participation of clients with high skewness. This is
the underlying idea of FedACS.

As is shown in Fig. 3(a), FedACS has three components:
insight derivation, skewness estimation, and client selection. In
the insight derivation part, each participating client generates
insight, which will be utilized by the server to infer client
skewness. The design of insight is of a high degree of freedom,
but should not leverage direct information about raw data. In
this paper, the insight is the results of a batch gradient descent
(BGD) to cater to the host task, FL. Our design reuses the
infrastructure of FL, and obtains the same level of privacy
protection as FL.

In the skewness estimation part, the server transforms the
insights derived by clients into the estimations of clients’
skewness. The Hoeffding’s inequality is applied to bridge
the connection between the uploaded insights and clients’
skewness in a non-heuristic way.

In the client selection part, a MAB is formulated, where
clients with low skewness are interpreted as the desirable arms.
Our tailored dueling bandit solution carries out an exploration-
exploitation trade-off under the challenge of the non-stationary
reward while meeting the requirement of the host task.

To further demonstrate the usefulness of our extracted
skewness information, we enhance FL with our proposed
FedACS, which is illustrated in Fig. 3(b). The client performs
two gradient descent procedures in one iteration. One is for
the host FL task, and the other is for the insight derivation
procedure of FedACS. The two procedures are almost identical
except for parametric settings. Both results are uploaded to
the server, and are used for FL model aggregation and client
skewness estimation, respectively. The overall structure of
FedACS assisted FL is present in Algo. 1.

V. FEDERATED CLIENT SKEWNESS ESTIMATION

In this section, we provide details on the federated client
skewness estimation based on the Hoeffding’s inequality. We
take FL as an example of FedACS application, and the skew-
ness estimation scheme is therefore adapted for FL. In Section

Algorithm 1 FedACS: overall structure
1: Initialize the bandit B
2: Initialize the neural network \
3: for Round 1, 2, ...,) do
4: B selects participating clients (⊲ Algo. 2
5: for 2 ∈ (do
6: ΔF2 ← gradient descent on \ with FL settings
7: ΔF̂2 ← gradient descent on \ with FA settings
8: end for
9: Update \ with ΔF

10: ' ← derive skewness estimate with ΔF̂ ⊲ Eq. (16)
11: Update B with ' ⊲ Algo. 3
12: end for

V-A, we show how the Hoeffding’s inequality is employed
in the federated client skewness estimation. In Section V-B,
we further build the relationship between the results from the
Hoeffding’s inequality and the client skewness. In Section V-C,
an estimation for the expectation of the uploaded insights is
provided. In Section V-D, a practical estimation of the client
skewness is finally concluded. In Section V-E, we discuss that
FedACS is a modular design and can be easily adapted to all
kinds of federated tasks. In addition, for reading convenience,
we summarize the important notations in Table I.

A. Usage of the Hoeffding’s inequality

Estimating client skewness has two major challenges. First,
“skewness” of clients does not depend on class distribution
on one client, but on how close it is to the global distribution.
Therefore, the skewness must be calculated by considering
the situation of all clients. Second, the class distribution is
usually considered private. As a result, the insight should be
sufficiently “indirect” that the server is unable to infer the class
distribution of each client.

In this part, we demonstrate how the Hoeffding’s inequality
is applied in skewness estimation. Since the insight we used
is in the form of a gradient (weight change) from the neural
network, we first briefly introduce how the gradient is derived,
and then show how the Hoeffding’s inequality is linked to it.

Suppose there are # clients in total in the system. Denote
38,< as the <-th datum in the 8-th client. "8 is the number of

6

data in the 8-th client. Neural networks calculate gradient via
backward propagation. First, the client calculates a loss func-
tion !>BB(3) for each datum 3 indicating how the prediction
of one datum 3 is closed to the truth. Then, the client averages
the loss function of all data it owns to form a cost function
�>BC8 . Finally, the client calculates the gradient of the neural
network. Denote the index (dimension) of weight as : , and
the number of weights is , we have

ΔF
(:)
8

= W × m�>BC8
mF (:)

, (6)

where ΔF:
8

is the gradient of client 8 in dimension : , and W

is a preset learning rate. In FL, client 8 upload ΔF8 , with
 dimensions, to the server. This is the full procedure of
generating gradients in a neural network. Then we link the
final result ΔF8 to the Hoeffding’s inequality.

Denote I (:)
8,<

as the :-th dimension of gradient derived from
the <-th datum in the 8-th client, times the learning rate W.

I
(:)
8,<

= W
m!>BB(38,<)

mF (:)
. (7)

Denote I
(:)
8

as the average value of I (:)
8,<

, based on the
gradient calculation of deep learning in (6), we have

I
(:)
8

=
1
"8

"8∑
<=1

W
m!>BB(38,<)

mF (:)

= W
m 1
"8

∑"8

<=1 !>BB(38,<)
mF (:)

= W
m�>BC8

mF (:)

= ΔF
(:)
8
. (8)

Since I (:)
8,<

are derived from different independent datum, they
can be treated as independent random variables. In addition,
the uploaded weight change ΔF (:)

8
is the average value of

I
(:)
8,<

. Therefore, we apply the Hoeffding’s Inequality in (1) to
I
(:)
8,<

, and get ?:
8
, the probability that :-dimension of weight

change from client 8 diverges from its exception for a fixed
value n . Namely,

?:8 = P(|ΔF
(:)
8
− E(ΔF (:)

8
) |) ≥ n)

≤ 24G?
(
−

2n2"2
8∑"8

<=1 (1 (:) − 0 (:))2

)
= 24G?

(
− 2n2"8

(1 (:) − 0 (:))2

)
, (9)

where 1 (:) and 0 (:) are the upper and lower bounds of I (:)
8,<

.
To make our estimate comparable for different client (8) and
datum (<), we adopt the same bounds 1 (:) and 0 (:) across
all clients instead of 1 (:)

8,<
and 0

(:)
8,<

. We are safe to do this
because (1) does not require a tight bound.

Recall that I (:)
8,<

are weight changes derived by one datum.
Although the server does not have knowledge about the datum
38,<, we can estimate its skewness by estimating the skewness
of I (:)

8,<
, which is a mapping of 38,<. However, in federated

learning, values of I (:)
8,<

are also private. Therefore, FedACS

TABLE I
IMPORTANT NOTATIONS

Notation Definition
8, 9 Index of client
< Index of datum in one client
: Index of parameter of the neural network
Number of client
"8 Number of data in client 8
 Number of parameters of the neural network
 ̂ Number of parameters of the last layer
38,< <-th datum of client 8
I8,< Gradient derived by 38,<
I
(:)
8,<

:-th dimension of I8,<
I
(:)
8

Average of I (:)
8,<

for all data in client 8

?
(:)
8

Probalistic bound derived by the Hoeffding’s inequality
0 (:) Upper bound of I (:)

8,<

1 (:) Lower bound of I (:)
8,<

ΔF8 Uploaded gradient from client 8
ΔF Average uploaded gradient
ΔF

(:)
8

:-th dimension of ΔF8

ΔF
(:)

:-th dimension of ΔF
%
(:)
8

Skewness estimate of client 8 based on dimension :
%8 Intermediate skewness estimate of client 8
&8 Final skewness estimate of client 8
k8 Intrinsic skewness of client 8
'8 Reward of client 8 for bandit

does not require the clients to upload I
(:)
8,<

, but uses the
Hoeffding’s inequality to estimate its expectation based on
ΔF
(:)
8

.

B. Connection between client skewness and ?
(:)
8

In this part, we link obtained ?:
8

to client skewness, so that
the bridge between the client insights and the client skewness
estimation is completed.

We start with null and alternative hypotheses H0 and H1,

H0: Data in client 8 is IID distributed.
H1: Data in client 8 is not IID distributed.

In reality, there is no such a binary classification between IID
and non-IID. These two hypotheses are never accepted and
rejected in this paper. Instead, their probabilities of acceptance
are calculated to infer the client skewness. To be specific, we
conduct the hypothesis test to infer the client skewness: we
first accept H0 anyway, so that we can calculate ?:

8
. The

obtained ?:
8

then estimates how rare the situation is, which
indicates the possibility to reject H0 (and accept H1). Finally,
we can explore the skewness of clients based on the possibility
to reject H0.

Following the aforementioned rationale, we first link the
possibility of rejecting H0 to the value of ? (:)

8
derived by the

Hoeffding’s inequality, as presented in Lemma 1.

Lemma 1. At least one of the alternatives must be satisfied:
1) clients with highers ? (:)

8
values are more likely to accept

H0, or 2) clients with highers ? (:)
8

values are likely to have
a lower skewness.

Proof. See Appendix A-A �

In fact, the two alternatives in Lemma 1 indicates the same
results: if we have a high possibility to believe that client 8 is

7

IID, and then client 8 is equivalently more likely to be with
low skewness, because an IID client is defined to be with the
lowest skewness. Therefore, we can consider that the value of
?
(:)
8

has a negative relationship with client skewness anyway.
In addition, when the assumption is made that data in client

8 is IID, the expectation of I (:)
8

should be equal to the global
one I (:) . Based on that, a new expression of ? (:)

8
is derived

as a side product from Lemma 1, i.e.,

?
(:)
8

= P(|ΔF (:)
8
− E(I (:)) |) ≥ n)

≤ 24G?
(
− 2n2"8

(1 (:) − 0 (:))2

)
. (10)

C. Estimation of E(I (:))
According to (10), if we want to use this ? (:)

8
to measure

skewness at the :-th dimension, we first need the expectation
of I (:) to derive n , and then ?

(:)
8

. The exact value of E(I (:))
is the average of I (:)

8,<
of all data in all clients (∀8, <). However,

not all clients participate in each round in the federated
learning. Therefore, the exact value is impossible to obtain.
Instead, we used the average of all data in all participating
clients to estimate E(I (:)).

We present the rationale of estimating E(I (:)) into the
following theorem.

Theorem 1. The expectation of I (:) can be estimated by the
average of uploaded weight change of all participating clients,
weighted by the sample size of each client.

Proof. See Appendix A-B �

As the estimation of E(I (:)) has been given, we are able
to propose a more practical estimation of client skewness.
Rewrite (10), we have

%
(:)
8

= 24G?
(
− 2(n (:))2"8
(1 (:) − 0 (:))2

)
, (11)

where
n (:) = |ΔF (:)

8
− ΔF (:) |. (12)

Here, ΔF
(:)

indicates the weighted average of uploaded
weight change of all participating clients on dimension : .

D. Combination of dimensions and formation of final skew-
ness estimation

Equation (11) provides an estimation about the skewness of
all clients. However, it does only make use of one dimension
of weight changes. We include the skewness estimation by
all dimensions of weight change to make the client skewness
estimation more robust. The combination of estimation from
different dimensions is not mathematically purposeful, but
consider that the nature of % (:)

8
is a probability. Multiplying

%
(:)
8

among all dimensions is also plausible, as it can be
understood as the logical operator “and”.

A naïve approach is to apply the whole neural network
to generate the skewness estimation as the prior version of
FedACS did [1]. However, such an approach indicates that the

whole neural network of the FA part has to be uploaded, in-
troducing significant communication overheads. In this paper,
we optimize it by only utilizing weights from the last layer of
the neural network, which is sufficiently representative for the
skewness estimation and only introduces neglectable overhead.
A detailed overhead analysis is presented in Section VII.

The procedure of combining the dimensions and deriving
the skewness estimate is present in Appendix A-C. As a result,
we derive a final result &8 as a practical estimate of client
skewness.

&8 =
√
"8 | |ΔF8 − ΔF | |2 (13)

where,
ΔF =

1∑
8∈#C

"8

∑
8∈#C

"8ΔF8 . (14)

The values of &8 have a positive correlation to clients’
skewness, i.e., for all client pairs 0 and 1,

k0 > k1 ⇐⇒ &0 > &1 , (15)

where k0 and k1 are intrinsic skewness of client 0 and 1.
&8 is an effective estimate of client skewness, and can be

calculated based on uploaded FA insights from clients. If the
prerequisite is satisfied that the number of data in each client
is equal (which is practical by limiting the number of data
participating in FL), the requirement of information about data
size can be removed.

E. Analysis and Discussion

Computation complexity It can be easily concluded that
the overall complexity of FedACS assisted FL is in the order
O()" |\ |), where) is the total number of rounds, " is the
number of participating clients in one round, and |\ | is the
number of parameters of the host neural network. FedACS
exactly has the same computation complexity as vanilla FL.

Design benefit Since FedACS aims at assisting FL tasks
here, the insight derivation (local analysis) part is designed
as a gradient descent procedure with three benefits. First, it
reuses the global model distributed by the server, and does
not require extra downward communication. Second, in order
to perform the host FL, each client must have the ability to
perform gradient descent. FedACS does not require clients
to install or deploy any other computation scheme. Last, the
insight derived by clients is in the form of gradients (weight
changes). Therefore, our skewness estimation maintains the
same level of privacy reservation as its host task FL, and does
not introduce an extra risk of privacy exposure.

Generality Though we mainly focus on distribution skew-
ness analytics in this paper, following the line of non-IID FL
studies [24]–[28], the gradient information we use as the proxy
to the local data allows FedACS also capable of handling
other data heterogeneity beyond class distribution. Essentially,
any form of data heterogeneity, as long as it leads to a more
diverged gradient, can be theoretically measured by FedACS.
In addition, it is not a complicated task to adapt FedACS
to assist other federated tasks. It can be easily completed by
redefining I

(:)
8,<

in (7) with all other parts remain unchanged,
because I (:)

8,<
can be any mapping of raw data 38,<. An easy

8

and good approach is to design I
(:)
8,<

as final or intermediate
results of the host task, like the gradient for the FL task. Users
are free to decide the number of dimensions ̂ . They can
increase ̂ by generating many kinds of insights, and therefore
increase the accuracy of the skewness estimation.

VI. ANALYTICS INFORMED CLIENT SELECTION: A
BANDIT APPROACH

In this section, to demonstrate the benefit of the extracted
skewness information derived in (13), we make use of this
estimation to select clients with low skewness as participants
of FL to help improve FL. We first demonstrate that leveraging
this information to help client selection is non-trivial in Section
VI-A. We then carefully formulate the client selection problem
into a dueling bandit problem based on several findings we
find in Section VI-B. We present our tailored dueling bandit
solution in Section VI-C.

A. Challenges: drifting reward and limited sample size

At first glance, selecting clients with different skewness
via MAB is plausible for this scenario, in which clients with
different skewness levels refer to arms with different potential
rewards [32]. Since MAB pursues arms with a high reward,
and we are seeking those with low skewness (low &8), we
simply use the inverse of &8 as the reward of arm '8 , i.e.,

'8 = −&8 = −
√
"8 | |ΔF8 − ΔF | |2 (16)

Denote `8 as the exception of '8 , and `∗ = max8 `8 . An
MAB tries to select a sequence of arms that minimize the
regret d,

d =) · `∗ −
)∑
C=1

'(C), (17)

where '(C) indicates '8 of the arms being selected at time C.
Although the bandit formation above seems plausible, we

present two challenges that make the classical MAB solutions,
e.g. upper confidence bound (UCB), n − 6A443H, perform
poorly in identifying the right client.

Challenge 1: The reward value '8 in (16) is drifting,
which violates a prerequisite of multi-armed stochastic bandit
that the distribution of '8 should be stationary over time.

To demonstrate this, we use the defined uniform skewness
environment model to reveal the changes of '8 over time.
In this environment, all 200 clients are U-dominance clients.
140 clients are generated by Definition 3, filling up the
environment. And the rest 60 clients are evenly divided into six
observation groups, denoted as groups 1-6 (or G1-6). Clients
in these groups are assigned U values with 0, 0.2, 0.4, 0.6,
0.8, and 1.0, respectively. In each round, all clients’ rewards
in observation groups are calculated using (16) as if they are
selected for participating in the corresponding round.

The results are shown in Fig. 4. Several interesting insights
can be derived from it. First, the values of '8 of all groups
are drifting over time. Second, the quantitative relationship of
groups holds over time, i.e., client group with low skewness
has higher reward than those with high skewness in any single
round. Third, although the overall trend of '8 reflects the group

0 200 400 600 800 1000
Communication Round

60

40

20

0

Re
wa

rd

G1
G2
G3

G4
G5
G6

1 2 3 4 5 6
Group

40

30

20

10

Re
wa

rd

Fig. 4. '8 values of different groups, groups with smaller indexes are less
skewed. Left: '8 values in different rounds, the lines indicate median reward
of clients, and the shaded areas indicate the range. Right: '8 values of different
groups in round #500.

skewness, irregulars exist. It is reflected by the overlap of the
shaded area in Fig. 4(a), which means that in certain cases,
clients with higher skewness have higher '8 . In addition, Fig.
4 further validates the correctness of the skewness estimation
procedure in FedACS, since '8 values separate the clients with
different skewness.

The drifting phenomenon of '8 has a theoretical cause.
Eq. (13) shows that the calculation of skewness estimate
derived is based on the global model for each round. As
a result, the estimate is exactly not comparable in different
rounds, since the global model in different rounds differs.
In other words, there is no guarantee that values of '8 are
comparable in different rounds, i.e., we cannot guarantee the
value of '8 of the same client (or client with same skewness)
are stationary over time. The aforementioned insights greatly
challenge the usage of stochastic MAB. Because traditional
stochastic MAB algorithms, like n-greedy and UCB, require
the reward distribution of arms to remain unchanged over time
[33].

Challenge 2: Curse of small sample size exists, which
can result in poor performance.

If we use the aforementioned bandit solutions directly, as
the bandit converges, we will repeatedly use a small number
of clients with the lowest skewness. However, this naturally
means that only a little portion of raw data is utilized by neural
networks, which can be not sufficient to reach a satisfying
convergence accuracy for neural network models.

We design another experiment to demonstrate the degrading
effect of lacking raw samples. We fixed the number of IID
samples held by each client to be 250, and the number of
clients being selected for each round to be 10. Then, we
adjust the number of clients in the environment to be 50, 100,
150, and 200. Since the CIFAR-10 dataset has 50,000 training
samples at all, the four settings indicate that 25%, 50%, 75%,
and 100% of raw samples are utilized.

As demonstrated in Fig. 5, with the size of data being
utilized decreasing, the degrading effect becomes more critical.
In addition, unlike the degrading effect of skewness (Fig. 2),
lacking raw samples does not slow the convergence speed at
the starting rounds.

B. A dueling bandit formulation

For the first challenge of drifting reward, the most straight-
forward consideration to capture the drifting reward is model-
ing this problem as a non-stationary bandit. The non-stationary

9

0 200 400 600 800 1000
Communication Round

45

50

55

60

65

70
Te

st
 A

cc
ur

ac
y

(%
)

25% samples
50% samples
75% samples
100% samples

Fig. 5. Test accuracy v.s. communication rounds of FL with different size of
utilized samples.

bandit is firstly proposed in [34], considering the bandit whose
arms have reward distribution varying over time. However,
the non-stationary bandit focuses on the potential intersection
of rewards of different arms, which leads to the changing
optimal arm [35]–[37]. In order to prevent the potential loss,
non-stationary bandit algorithms frequently check whether
the optimal arm is changed by increasing the proportion
of exploration. This high proportion of exploration behavior
sacrifices the bandit effectiveness.

Fortunately, in our case, since the data distribution of each
client usually stays the same, we do not need to worry about
changes of optimal clients. It is unlikely to exist a severe
intersection of '8 curves for clients with different skewness.
Furthermore, theoretically, skewness estimations in the same
round are derived from the same global model, and are there-
fore comparable. Because a low skewness client is more likely
(with possibility higher than 0.5) to have higher '8 than those
with high skewness. We can convert the skewness estimate of
clients in one round into comparisons of participating clients.
Our problem for selecting a set of clients with low skewness
is equivalent to selecting a set of clients that get the most
wins in duelings. We can then formulate our problem into a
multi-dueling bandit problem, whose preliminaries have been
introduced in Section II-C.

As for the curse of the limited sample size, essentially, this
challenge reflects the trade-off between the number of clients
we expect to utilize and the skewness level of the selected
clients we can tolerate in bandit. If the number of involved
clients remains small, the degrading caused by client skewness
is reduced, but the degrading caused by lacking raw samples
is aggravated. On the contrary, when we increase the number
of clients being utilized, the neural network will receive more
raw samples, but the clients with higher skewness will “sneak
in”, and degrade the FL performance.

Based on the previous two insights, we present the formal
formulation of our problem. Denote the set of clients as �. For
each client 8 ∈ �, k8 indicates quantified intrinsic skewness of
client 8. Note that if all clients are U-dominance clients and
U8 denotes the dominance level of a particular client 8, then
k8 has a positive correlation with U8 .

For each pair of clients 28 and 2 9 , if they are both given
rewards from (16) in the same round or closed rounds, and

then the quantitative comparison of '8 and ' 9 has a noisy
negative correlation with k8 and k 9 , i.e.,

P('8 > ' 9) > 0.5 ⇐⇒ k8 < k 9 . (18)

Similar to (2), we denote the stochastic preference between
client 8 and 9 as q(8, 9),

q(8, 9) = P('8 > ' 9) − 0.5. (19)

We formulate our client selection problem as,

min
(′

{
)∑
C=1

∑
8∈(′

q(8 (∗) , 8)
}
, (20)

where 8 (∗) is the client with the lowest skewness, and (′

indicates the set of desirable clients.
Notably, the utilized sample size is controlled by the size

of desirable client pool (′, where a larger (′ allow users to
utilize more clients.

C. Dueling based client selection algorithm

Algorithm 2 Select clients
Input: �, � parameters of multi-dueling bandit, � set of

clients, ^ number of clients to be selected, skewness
tolerance _

Output: (set of selected clients
1: (′← empty set
2: %← |� | · _
3: for 8 = 1, 2, ..., % do
4: for 2 ∈ � do
5: sample \2 by Beta(�8 + 1, �8 + 1)
6: end for
7: 2∗ ← argmaxc\c
8: append 2∗ to (′

9: remove 2∗ from �

10: end for
11: (← randomly draw ^ clients from (′

12: return (

Algorithm 3 Update rewards
Input: �, � parameters of beta distribution of each client,

' rewards of participating clients in this round, '<ℎ>

historical rewards, [learning rate
Output: �, � updated parameters

1: '<0;;> ← combination of ' and '<ℎ> (when one client
has rewards in different rounds, use the latest one)

2: for 8 ← clients in ' do
3: for 9 ← clients in '<0;;> do
4: if '8 > '<0;;>9

then
5: �8 ← �8 + [
6: else if '8 < ' 9 then
7: �8 ← �8 + [
8: end if
9: end for

10: end for
11: return �, �

10

0 200 400 600 800 1000
Communication Round

45

50

55

60

65

70

75
Te

st
 A

cc
ur

ac
y

(%
)

IID
Baseline
FedACS

Rexp3
CMFL
Oort

(a) Uniform skewness environment

0 200 400 600 800 1000
Communication Round

45

50

55

60

65

70

75

Te
st

 A
cc

ur
ac

y
(%

)

IID
Baseline
FedACS

Rexp3
CMFL
Oort

(b) Inverse Pareto skewness environ-
ment

0 200 400 600 800 1000
Communication Round

45

50

55

60

65

70

75

Te
st

 A
cc

ur
ac

y
(%

)

IID
Baseline
FedACS

Rexp3
CMFL
Oort

(c) Dirichlet skewness environment

0 200 400 600 800 1000
Communication Round

30

40

50

60

70

Te
st

 A
cc

ur
ac

y
(%

)

IID
Baseline
FedACS

Rexp3
CMFL
Oort

(d) Few class skewness environment

Fig. 6. Test accuracy v.s. communication rounds on different skewness environments.

To solve the presented multi-dueling bandit problem, we
extend the existing INDSELFSPARRING, proposed in multi-
dueling bandit literature [23], to a more flexible version,
named FLEXSELFSPARRING, to better handle our problems.
The multi-dueling bandit solution is based on Thompson
sampling. It maintains a beta distribution with two parameters
� and � for each arm. The bandit functions by sampling from
the distribution to select the arms, and updating the parameters
based on the dueling result of arms. Algo. 2 describes the
procedure of selecting clients. It requires all clients to sample
from their own beta distributions, and repeatedly choose
clients with the highest sampling result. Algo. 3 describes
the procedure of updating the bandit based on the received
rewards. It shapes the beta distributions of participating clients.
If a client is more likely to defeat others in duels, it will have
a higher � value and a lower � value, and its beta distribution
will be more likely to return higher results.

Three new features, named reward transformation, sequen-
tial selection and historical comparison, are further added to
FLEXSELFSPARRING, to improve its performance in FedACS.

Reward transformation In FLEXSELFSPARRING, the raw
input of dueling bandit is not the binary result of duelings,
but the rewards of arms derived from (16), which is
drifting over time. Therefore, we first transform derived
rewards into binary dueling results by comparing their '8
before updating the bandits.

Sequential selection In order to increase the raw data utilized
by the neural network, we apply parameter _ to explore
and maintain a client pool with low skewness, whose size
is larger than the number of clients selected each round.
After that, clients are randomly sampled from that pool
as participants of FL.

Historical comparison Since the raw evidence we obtained
to train the bandit is exactly a drifting reward, instead of
binary dueling results. Simply converting it into binary
dueling in the method mentioned above will eventually
lose some valuable information. To completely digest the
knowledge from '8 , we create dueling results based on
not only '8 in the same round, but also historical '8 in
a few former rounds.

For the sequential selection, we emphasize that, unlike
vanilla bandit which explores and exploits the top ^ lowest
skewness clients, our bandit tries to find _ ·# clients, denoted
as (′, with low skewness, and randomly pick ^ clients from
them in each round. This is a simple but effective way to

balance the trade-off between client skewness and lacking raw
samples. When _ takes its minimum, ^/# , it becomes a vanilla
multi-dueling bandit, which always tries to use top ^ clients
with the lowest skewness. On the contrary, when _ = 1, it falls
back to randomly selecting clients (the default policy in the
existing FL protocol). By the introduction of parameter _, we
can both restrict participating clients to be with low skewness,
and provide the neural network with sufficient raw sample by
extending the client pool.

The approach of historical comparison has both theoreti-
cal and experimental supports. Theoretically, dueling bandit
allows “noisy” comparison instead of determined ones [22],
and therefore admits comparison with historical results even
if it is less credible. Experimentally, results from Fig. 4(a)
show that rewards for the same kinds of arms do not change
drastically in a few rounds.

We next prove that the improved FLEXSELFSPARRING
algorithm does not hurt the kernel of INDSELFSPARRING
algorithm so that its theoretical guarantee can be preserved.

Theorem 2. Under approximate linearity, FLEXSELFSPAR-
RING converges to the optimal set of clients (′.

Proof. See Appendix A-D. �

Theorem 3. Under approximate linearly, FLEXSELFSPAR-
RING converges to the optimal set of clients with an asymp-
totically optimal no-regret rate of O(# ln())/X), where) is
the number of communication rounds, and X is the difference
between expected binary dueling results of best two clients.

Proof. See Appendix A-E. �

In addition to the convergence of the bandit scheme, the
assistance of FedACS does not break the convergence of
the FL task. The theoretical convergence guarantee is based
on [38], which proves the convergence of FedAvg under an
arbitrary client selection scheme. Specifically, we can apply
the client selection of FedACS in Algo. 2 into Definition 3.2
and Theorem 3.1 of [38] to derive the bound of convergence.

VII. EVALUATION

Settings: FedACS is evaluated on a popular dataset, CIFAR-
10 [30]. In our experiments, there are 200 clients following
three settings of Definitions 3, 4, and 5. In Definition 4, the
shape parameter B = 2. In Definition 5, the parameters for
layering are G<43 = 0.2, G<0G = 3. Each clients holds " =

2000 samples. The simple CNN model from Pytorch tutorial

11

is used [31]. Local epoch and local batch size are set to � =
5, � = 400. Learning rate and learning rate decay per local
epoch are set to W = 0.1, W3 = 0.9993. The FL model is trained
for five repeat trials, and the medians are recorded. In Algo.
3, learning rate of dueling bandit [= 0.2, and five historical
rounds are considered. If not mentioned, skewness tolerance
parameter _ = 0.4.
Baseline and benchmarks: The baseline is the vanilla FL,
where the participants are randomly selected. We also imple-
ment the case that the data are IID distributed in clients, which
represents a theoretical upper bound of FedACS. In addition to
these two, we implement three benchmarks from literature for
comparison: Oort, CMFL, and Rexp3. Oort [32] and CMFL
[26] are two state-of-the-art solutions designed for improving
FL performance under the non-IID environment. Oort uses an
empirical MAB to select clients, regrading training loss as
a reward. CMFL calculates the similarity of clients’ gradient
and global gradient based on the sign count of dimensions,
and removes “diverging” client gradients. Rexp3 [36] is an
advanced non-stationary bandit algorithm with a strong regret
bound. In our experiments, Rexp3 bandit will be fed with '8
in (16) as rewards, which is the same as FedACS. It can also
be seen as an ablation study of FedACS.

A. Performance improvement in FL

Overall performance: Figs. 6(a)-(c) show the performance of
FL in different skewness environments. We conclude several
evaluation metrics of FedACS and other methods. The first
set of metrics is about the test accuracy, we first calculate
terminal accuracy, as the average test accuracy in the last 50
rounds. Based on it, we conclude relative improvement, as the
improvement of terminal accuracy, compared to the degrading
effect of the skewness environment. The second set of metrics
are regarding the convergence speed. We first set the target
accuracy of three skewness environments (uniform, inverse
Pareto, Dirichlet) to be 70%, 68%, and 68%, respectively, and
record rounds have taken for each method to reach the target
accuracy. Based on that, we then calculate speedup of methods,
compared to the baseline.

Results about test accuracy and convergence speed are
summarized in Tables II and III4 respectively. According to
experiment results, FedACS significantly improves the perfor-
mance of FL. In different skewness environments, the accuracy
degrading is reduced for 54.1% - 78.2%, and the convergence
speeds up for 2.0 × −2.1×. Interestingly, one of our bench-
marks, CMFL, turns out to hurt FL, because the manually
selected feature it used cannot be an accurate measurement
of the client skewness in our data environments. Although
Rexp3 shares the skewness measurements with FedACS, it
only has a slight improvement on FL. The reason is that
the non-stationary bandit performs too conservatively in the
exploration-exploitation dilemma to prevent the drifting of
optimal arms. Therefore, it is less suitable for our bandit
problem than dueling bandits. Oort performs much better than
the former two benchmarks, providing a similar speedup to

4Some results are not available in the table because CMFL fails to reach
the target accuracy

TABLE II
SUMMARY OF TERMINAL ACCURACY AND RELATIVE IMPROVEMENT

Environment Method Accuracy (%) Improvement (%)

IID - 74.0 100.0
baseline 70.8 0.0
FedACS 73.3 78.2

Uniform Rexp3 71.3 15.1
CMFL 68.3 −77.8
Oort 72.3 45.9

baseline 68.8 0.0
FedACS 71.6 54.1

Inverse Pareto Rexp3 69.7 16.2
CMFL 66.2 −50.1
Oort 71.3 47.5

baseline 69.7 0.0
FedACS 72.7 69.8

Dirichlet Rexp3 70.1 9.8
CMFL 64.8 −112.2
Oort 71.3 37.4

TABLE III
SUMMARY OF ROUNDS TO TARGET AND RELATIVE SPEEDUP

Environment Method Rounds Speedup

baseline 490 1.0x
FedACS 245 2.0x

Uniform Rexp3 400 1.3x
CMFL 775 0.6x
Oort 270 1.8x

baseline 520 1.0x
FedACS 245 2.1x

Inverse Pareto Rexp3 365 1.4x
CMFL 835 0.6x
Oort 205 2.5x

baseline 465 1.0x
FedACS 220 2.1x

Dirichlet Rexp3 265 0.9x
CMFL - -
Oort 210 2.2x

0 200 400 600 800 1000
Communication Round

60

62

64

66

68

70

72

74

Te
st

 A
cc

ur
ac

y
(%

)

IID
 = 1.0 (Baseline)
 = 0.05

 = 0.2
 = 0.4
 = 0.6

Fig. 7. Performance of FL with different values of _.

FedACS, but its performance regarding terminal accuracy is
outperformed by FedACS.
Advantage over Oort: Among the three benchmarks, Oort is
the only strong opponent of FedACS. In addition, an irregular
is observed regarding the performance of Oort, that its test
accuracy decreases in later rounds in Fig. 6(c). We find out that
it is partially due to a special mechanism of Oort: it bans the
clients whose rounds of participation exceeds a threshold. With
this mechanism, some clients with low skewness are banned

12

0 200 400 600 800 1000
Communication Round

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e

12

10

8

6

4

2

0

Average Reward

Avg. (Baseline)
Avg. (FedACS)

Avg. reward (Baseline)
Avg. reward (FedACS)

Fig. 8. Average U and '8 values of participating clients over time in uniform
skewness environment.

in later rounds. Although removing this mechanism may help,
we claim that the mechanism is necessary for Oort. Since Oort
regards clients with high training loss as high quality, it will be
undefended for potential poisoners. Consider a poisoner whose
data are all mistakenly labeled, and it will of course gain high
training loss. If no banning mechanism is present, the poisoner
will be served as “high quality” and participate in many
rounds, which is catastrophic for FL. Meanwhile, FedACS is
naturally robust to these poisoners, because poisoners provide
gradients diverge from average, and therefore receive a low
reward in FedACS.

Severely skewed environment: In many real-world scenarios,
the client skewness is expected to be much more severe than in
our simulations above, and the clients are unlikely to possess
data from all classes. To evaluate the performance under
these severely skewed environments, we design the few class
(uniform) skewness environment. In such an environment,
each client is set similar to the uniform skewness environment,
but it only has data from G classes where G is a uniform
random variable ranging between 1 and 10. Experiment results
in Fig. 6(d) show that FedACS can still outperform the bench-
marks in the few class skewness environment, but its relative
improvement (47.3%) is smaller than in other environments.
The reason is that the clients in the desired pool generated by
FedACS are more skewed due to the overall severely skewed
environment.

Parameter sensitivity analysis: Skewness tolerance _ is a
critical parameter for the performance of FedACS assisted FL.
To investigate its influence, we test FedACS on a uniform
skewness environment with different values of _. Experiment
results is concluded in Fig. 7. When _ takes its minimum, 0.05,
although the harm of skewness is minimized, its performance
turns out to be even lower than the baseline. It is due to
a severe lacking of data. The performance increases when
increasing _ from 0.05 to 0.4, owing to more utilized data, and
decreases when changing _ from 0.4 to 1.0, due to the severer
skewness of the participants. A good choice of _ should be
neither too high, which connives skewed clients, nor too low,
which limits the number of utilized samples. Among all values
we used, the one with the best performance is 0.4, which is
applied in other experiments.

 =
 0

.2

0 40 80 120 160 200

 =
 0

.4 100

200

Fig. 9. Clients’ participation summary in FL in uniform skewness environ-
ment, clients in the left has lower skewness, and vise versa.

B. Details about client selection

Functionality of the bandit: In Fig. 8, two metrics about
client selection are presented. The first is the average U

values of participating clients in each round. Since lower U
indicates lower skewness, this metric helps us identify the
overall skewness of participating clients in one round. The
second is the average '8 values of participating clients to feed
the bandit. This metric helps us identify whether the dueling
bandit functions properly to increase the overall reward. Both
metrics of Fig. 8 show that FedACS performs client selection
successfully. The average U values in FedACS fall quickly,
indicating that the skewness of participating clients becomes
low. Also, the average '8 becomes higher than baseline,
indicating that the bandit succeeds in pursuing a high reward.
Which clients are selected? In this part, we investigate some
details in the client selection procedure. We check whether
FedACS functions like our expectation, letting clients with
low skewness being more frequently selected. We used results
from a uniform skewness environment to verify it, so that we
can use U values of clients to represent client skewness. In
Fig. 9, we sort and arrange the clients with their U values,
where clients in the left have lower U, and therefore with
lower skewness. Then, we record how many times each client
is being selected as a participant in a whole FL process (1000
rounds). When _ = 0.4, approximately the first 80 clients are
selected to form a client pool, and therefore, the first 80 clients
are much more frequently selected than the rest. As for _ =
0.2, the phenomenon is similar, but the size of the client pool
becomes 40. The results show that FedACS accurately locks
on the clients with the lowest skewness, and lets them form a
pool with fixed sizes as candidates of participants.

C. Reducing overheads

Overhead analysis: Both extra computation and communica-
tion are introduced for the FA procedure. For the computation,
FedACS asks the clients to perform an extra training process,
with only one local epoch, and maximal batch size. Obviously,
one local epoch of BGD takes fewer communication resources
than the mini-batch approach used by the host FL process.
Since an FL epoch has five local epochs, we can derive a
loose estimate that the computation overhead introduced by
FedACS in our settings is less than 20%.

The communication overhead is derived by comparing the
number of weights of the host neural network and the number
of weights used by FedACS. In our settings, the neural network
has 620,060 parameters, and the number of weights, which is
utilized by FedACS, is 8500. Considering the fact that the
former has to be transmitted twice (download and upload),

13

0 200 400 600 800 1000
Communication Round

60

62

64

66

68

70

72

74
Te

st
 A

cc
ur

ac
y

(%
)

IID
Baseline
FedACS
FedACS (early stop)

Fig. 10. Performance of early stop.

while the latter is only transmitted once, the communication
overhead introduced by FedACS in our settings is 0.69%.
Early stop: The vanilla settings of FedACS require partici-
pants to derive and transmit insights every round. However,
experiment results in Fig. 8 show that the dueling bandit
converges much faster than the FL model, i.e., the FedACS
takes much fewer rounds to find out clients with low skewness.
Given the finding above, we add a new feature on FedACS,
called “early stop”. In our experiments, the insight derivation
and skewness estimation only happen in the first 200 rounds.
Afterward, FedACS only provides client selection, and the
participating clients do nothing for FedACS. The choice of the
terminal round is based on results in Fig. 8. After round #200,
the average U value of participating clients stops decreasing,
which indicates the bandit has converged. To validate the
performance of the early stop, we test it in a uniform skewness
environment. According to results in Fig. 10, early stop does
not degrade FL performance at all (the round-accuracy curve
almost overlaps with the vanilla FedACS). The early stop is
helpful in reducing overhead. In our settings, with an early
stop, FedACS only introduces a communication overhead
of 0.14%, and a computation overhead of less than 4%.,
which are exactly 1/5 of the former values.

VIII. RELATED WORK

A. Federated paradigm

Both forms of the federated paradigm are provided with
numerous applications. Traditional deep learning tasks, borrow
the power of FL to exploit data in the edge [11], [12]. On the
other hand, FA enables engineers to perform non-training tasks
with edge data. For example, FA evaluates the performance of
FL models [14], or completes traditional data mining tasks
[15], [16].

In addition to FL, there is another concept heavily related
to FA: distributed data mining (DDM) [39]. Although DDM
considers a similar scenario, where data mining tasks are
performed under the distributed scheme, there exists a crucial
difference between FA and DDM, that the server and clients
are usually owned by different stakeholders in FA, resulting
in the untrusted environment. Furthermore, in DDM, data
in the clients are usually assigned by the server, which is
different from the tenet of FA. The difference between FA

TABLE IV
DIFFERENCE BETWEEN FL AND FA

FL FA

Goal Training neural networks Non-training tasks

Aggregation FedAvg Task dependent

Insight Model weights Task dependent

TABLE V
DIFFERENCE BETWEEN DDM AND FA

DDM FA

Raw data transmission Redistribution Stay where it origins

Clients and server Trusted Untrusted

Heterogeneities Little concerned Focused

and its neighbor concepts are summarized in Table IV and V,
respectively.

B. Application of the Hoeffding’s inequality

The Hoeffding’s inequality has been widely applied in
various related fields. Data mining, which has a strong re-
lationship with FA, is also the majority of application of the
Hoeffding’s inequality [40], [41]. In [40], the Hoeffding’s in-
equality is applied in frequent data stream pattern mining. The
Hoeffding’s tree algorithm, firstly proposed in [41], creates
a decision tree in streaming data, and uses the Hoeffding’s
inequality to decide when a new leaf node should be split.
In addition, the Hoeffding’s inequality is applied in one of
our benchmarks, Oort [32]. In these applications, however,
the Hoeffding’s inequality is always utilized to calculate the
number of samples required given a confidence level. On the
contrary, the Hoeffding’s inequality is given a novel usage in
FedACS, which gives the number of samples (the number of
local data) first, and then uses the derived confidence level to
infer the likelihood to accept an assumption, which is linked
to the client skewness.

C. FL under heterogeneities

The existence of heterogeneities is a key characteristic
of FL, and therefore has attracted worldwide interest from
researchers. Some researchers tackle the device heterogeneity,
which harms the stability and performance of the FL system
[42], [43]. On the other hand, being consistent with FedACS,
many methods have been proposed to reduce the negative
effect of data heterogeneity [8], [25]. In [8], the local datasets
in the clients are augmented by the globally shared data to
reduce the skewness of the clients. In [25], reinforcement
learning helps find clients with higher potential benefits for
FL. Personalized Federated Learning, as an emerging variation
of traditional FL, breaks the limit of one global model and
alleviates the data heterogeneity [24], [44]. FedACS is a
universal framework for all kinds of federated tasks. Even
if we only consider FedACS assisted FL, there exist sev-
eral advantages over existing methods. FedACS improves FL
performance via intelligent client selection, neither requires
extra global data [8] or wastes the updates from the clients

14

[26]. Compared to its client-selection siblings, FedACS can
complete the client selection online [25], and is intrinsically
robust to the poisoners [32].

D. Non-stationary bandits and dueling bandits

Non-stationary bandit, originally proposed by Gittens in
[34], assumes the case that reward distribution of arms is
drifting over time. Several solutions or algorithms have been
proposed to tackle the non-stationary bandit problem [35],
[36]. In [35], discounted UCB and sliding-window UCB are
proposed, with an upper-confidence bound analysis of rounds
to suboptimal. In [36], a near-optimal algorithm named Rexp3
is proposed, borrowing the idea of the adversarial bandit to
provide a pessimistic regret bound.

Our novel usage of dueling bandit exactly derives higher
performance, compared to the non-stationary bandit. Dueling
bandit learns from binary dueling result of arm pairs instead
of reward values [22]. Traditional dueling bandit algorithms
aim at finding a single “strong” arm called Condorect winner.
An extension of the dueling bandit is the multi-dueling bandit,
which breaks the limit of comparison of two arms [23], [45].
In [45], more than two arms can participate in one dueling,
but the target remains to be finding the Condorect winner. In
INDSELFSPARRING algorithm, which is applied in FedACS,
the target is extended from single Condorect winner to a set
of “strong” arms [23].

IX. CONCLUSION

Data heterogeneity is a critical challenge for IIoT deploy-
ments and greatly affects the performances of federated learn-
ing in IIoT applications. In this paper, we follow the frame-
work of FA to present the first work on federated skewness
analytic and client selection, referred to as FedACS. FedACS
aims at building an ideal IID environment from massive clients
with diverged severity of data heterogeneity. Our proposed
FedACS could serve as a standalone federated analytic tool
for the distribution characterization purpose or symbiosis with
other host federated tasks to improve their quality of services.
Specifically, FedACS first uses local-derived insights to infer
about clients’ data heterogeneity with privacy protection based
on the Hoeffding’s inequality. After that, it intelligently selects
low skewness clients based on a carefully designed dueling
bandit solution. Extensive experiments demonstrate that, when
assisting federated learning, FedACS reduces the accuracy
degrading by ∼78.2%, and accelerates the FL’s convergence
for ∼ 2.4×.

REFERENCES

[1] Z. Wang, Y. Zhu, D. Wang, and Z. Han, “Fedacs: Federated skewness an-
alytics in heterogeneous decentralized data environments,” in IEEE/ACM
Int. Symp. Qual. Service, virtual event, Jun. 2021.

[2] Industrial IoT revenue expected to nearly double through
2025; data generation to triple. S&P Global. [On-
line]. Available: https://f.hubspotusercontent10.net/hubfs/5413615/451_
Reprint_Industrial-IoT_29APR2021.pdf

[3] Y. Guo, T. Ji, Q. Wang, L. Yu, G. Min, and P. Li, “Unsupervised anomaly
detection in iot systems for smart cities,” IEEE Trans. Netw. Sci. Eng.,
vol. 7, no. 4, pp. 2231–2242, Oct. 2020.

[4] A. Hazra, M. Adhikari, T. Amgoth, and S. N. Srirama, “Joint compu-
tation offloading and scheduling optimization of iot applications in fog
networks,” IEEE Trans. Netw. Sci. Eng., vol. 7, no. 4, pp. 3266–3278,
Oct. 2020.

[5] W. Li, Y. Chai, F. Khan, S. R. U. Jan, S. Verma, V. G. Menon, X. Li
et al., “A comprehensive survey on machine learning-based big data
analytics for iot-enabled smart healthcare system,” Mobile Netw. Appl.,
vol. 26, no. 3, pp. 234–252, Jan. 2021.

[6] 2018 reform of EU data protection rules. European Commission.
[Online]. Available: https://ec.europa.eu/commission/sites/beta-political/
files/data-protection-factsheet-changes_en.pdf

[7] California consumer privacy act. California Government. [Online].
Available: https://www.oag.ca.gov/privacy/ccpa

[8] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[9] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the Convergence
of FedAvg on Non-IID Data,” in Proc. Int. Conf. Learn. Represent.,
Addis Ababa, Ethiopia, Apr. 2020.

[10] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” arXiv preprint
arXiv:1912.04977, 2019.

[11] Y. Liu, A. Huang, Y. Luo, H. Huang, Y. Liu, Y. Chen, L. Feng, T. Chen,
H. Yu, and Q. Yang, “Fedvision: An online visual object detection
platform powered by federated learning,” in Proc. AAAI Conf. Artif.
Intell., New York, NY, Apr. 2020, pp. 13 172–13 179.

[12] T. Yang, G. Andrew, H. Eichner, H. Sun, W. Li, N. Kong, D. Ram-
age, and F. Beaufays, “Applied federated learning: Improving google
keyboard query suggestions,” arXiv preprint arXiv:1812.02903, 2018.

[13] A. Imteaj, U. Thakker, S. Wang, J. Li, and M. H. Amini, “A survey on
federated learning for resource-constrained iot devices,” IEEE Internet
Things J., vol. 9, no. 1, pp. 1–24, 2021.

[14] Federated analytics: Collaborative data science without data collection.
Google AI. [Online]. Available: https://ai.googleblog.com/2020/05/
federated-analytics-collaborative-data.html

[15] W. Zhu, P. Kairouz, B. McMahan, H. Sun, and W. Li, “Federated heavy
hitters discovery with differential privacy,” in Proc. Int. Conf. Artif.
Intell. Statist., Palermo, Italy, Jun. 2020, pp. 3837–3847.

[16] D. Ravichandran and S. Vassilvitskii, “Evaluation of Cohort Algorithms
for the FLoC API.” [Online]. Available: https://github.com/google/ads-
privacy/raw/master/proposals/FLoC/FLOC-Whitepaper-Google.pdf

[17] E. Bagdasaryan, P. Kairouz, S. Mellem, A. Gascón, K. Bonawitz, D. Es-
trin, and M. Gruteser, “Towards sparse federated analytics: Location
heatmaps under distributed differential privacy with secure aggregation,”
arXiv, 2021.

[18] Z. Wang, Y. Zhu, D. Wang, and Z. Han, “Fedfpm: A unified federated
analytics framework for collaborative frequent pattern mining,” in Proc.
IEEE Conf. Comput. Commun., 2022.

[19] D. K. Dennis, T. Li, and V. Smith, “Heterogeneity for the win: One-shot
federated clustering,” in Proc. Int. Conf. Mach. Learn., virtual event, Jul.
2021, pp. 2611–2620.

[20] P. Kairouz, B. McMahan, and V. Smith. Federated Learning Tutorial.
[Online]. Available: https://sites.google.com/view/fl-tutorial/home

[21] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” in The Collected Works of Wassily Hoeffding. Springer,
1994, pp. 409–426.

[22] Y. Yue, J. Broder, R. Kleinberg, and T. Joachims, “The k-armed dueling
bandits problem,” J. Comput. Syst. Sci., vol. 78, no. 5, pp. 1538–1556,
Sep. 2012.

[23] Y. Sui, V. Zhuang, J. W. Burdick, and Y. Yue, “Multi-dueling bandits
with dependent arms,” arXiv preprint arXiv:1705.00253, 2017.

[24] Y. Huang, L. Chu, Z. Zhou, L. Wang, J. Liu, J. Pei, and Y. Zhang,
“Personalized cross-silo federated learning on non-iid data,” in Proc.
AAAI Conf. Artif. Intell., virtual event, Feb. 2021, pp. 7865–7873.

[25] H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated learning
on non-iid data with reinforcement learning,” in Proc. IEEE Conf.
Comput. Commun., Toronto, Canada, Jul. 2020, pp. 1698–1707.

[26] W. Luping, W. Wei, and L. Bo, “CMFL: Mitigating communication
overhead for federated learning,” in Proc. IEEE 39th Int. Conf. Distrib.
Comput. Syst., Dallas, TX, Jul. 2019, pp. 954–964.

[27] T. Yu, E. Bagdasaryan, and V. Shmatikov, “Salvaging federated learning
by local adaptation,” arXiv preprint arXiv:2002.04758, 2020.

[28] T.-M. H. Hsu, H. Qi, and M. Brown, “Measuring the effects of non-
identical data distribution for federated visual classification,” in Neurips
Workshop Federated Learn., Vancouver, Canada, Dec. 2019.

15

[29] I. B. Aban, M. M. Meerschaert, and A. K. Panorska, “Parameter
estimation for the truncated pareto distribution,” J. Amer. Statist. Assoc.,
vol. 101, no. 473, pp. 270–277, Jan. 2006.

[30] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” Tech. Rep., 2009.

[31] “Training a classifier - pytorch tutorials 1.7.1 documentation.” [Online].
Available: https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial

[32] F. Lai, X. Zhu, H. V. Madhyastha, and M. Chowdhury, “Oort: Efficient
federated learning via guided participant selection,” in Proc. USENIX
Symp. Oper. Sys. Des. Implementation, virtual event, Jul. 2021, pp. 19–
35.

[33] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Mach. Learn., vol. 47, no. 2-3, pp. 235–
256, May 2002.

[34] J. Gittins, “A dynamic allocation index for the sequential design of
experiments,” Progress in statistics, pp. 241–266, 1974.

[35] A. Garivier and E. Moulines, “On upper-confidence bound policies
for switching bandit problems,” in Proc. Int. Conf. Algorithmic Learn.
Theory, Espoo, Finland, Oct. 2011, pp. 174–188.

[36] O. Besbes, Y. Gur, and A. Zeevi, “Stochastic multi-armed-bandit prob-
lem with non-stationary rewards,” in Proc. Adv. Neural Inf. Process.
Syst., Montreal, Canada, Dec. 2014, pp. 199–207.

[37] A. Slivkins and E. Upfal, “Adapting to a changing environment: the
brownian restless bandits.” in Proc. Conf. Learn. Theory, Helsinki,
Finland, Jul. 2008, pp. 343–354.

[38] Y. J. Cho, J. Wang, and G. Joshi, “Client selection in federated learning:
Convergence analysis and power-of-choice selection strategies,” arXiv,
2020.

[39] L. Zeng, L. Li, L. Duan, K. Lu, Z. Shi, M. Wang, W. Wu, and P. Luo,
“Distributed data mining: a survey,” Inf. Technol. Manage., vol. 13, no. 4,
pp. 403–409, May 2012.

[40] J. X. Yu, Z. Chong, H. Lu, and A. Zhou, “False positive or false negative:
mining frequent itemsets from high speed transactional data streams,” in
Proc. Int. Conf. Very Large Data Bases, vol. 4, Toronto, Canada, Aug.
2004, pp. 204–215.

[41] P. Domingos and G. Hulten, “Mining high-speed data streams,” in Proc.
ACM Int. Conf. Knowl. Discovery Data Mining, Boston, MA, Aug. 2000,
pp. 71–80.

[42] C. Wang, Y. Yang, and P. Zhou, “Towards efficient scheduling of feder-
ated mobile devices under computational and statistical heterogeneity,”
IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 2, pp. 394–410, Feb.
2020.

[43] W. Wu, L. He, W. Lin, and R. Mao, “Accelerating federated learning over
reliability-agnostic clients in mobile edge computing systems,” IEEE
Trans. Parallel Distrib. Syst., vol. 32, no. 7, pp. 1539–1551, Jul. 2020.

[44] Q. Wu, X. Chen, Z. Zhou, and J. Zhang, “Fedhome: Cloud-edge based
personalized federated learning for in-home health monitoring,” IEEE
Trans. Mobile Comput. (early access), Dec. 2020.

[45] Y. Du, S. Wang, and L. Huang, “Dueling bandits: From two-dueling to
multi-dueling,” in Proc. 19th Int. Conf. Auton. Agents MultiAgent Syst.,
Auckland, New Zealand, May 2020, pp. 348–356.

Zibo Wang received the B.E. degree in Electrical
and Computer Engineering from Shanghai Jiao Tong
University in 2020. He is currently pursuing the
Ph.D. degree in the same institute. His research inter-
ests include federated learning, federated analytics,
and privacy computing.

Yifei Zhu (Member, IEEE) is currently an Assistant
Professor at Shanghai Jiao Tong University, China.
He received the B.E. degree from Xi’an Jiaotong
University, Xian, China, in 2012, and the M.Phil.
degree from The Hong Kong University of Science
and Technology, Hong Kong, China, in 2015, and the
Ph.D degree in Computer Science from the Simon
Fraser University, BC, Canada, in 2020. His current
research interests include edge computing, multi-
media networking, and distributed machine learning
systems.

Dan Wang (Senior Member, IEEE)’s research falls
in general computer networking and systems, where
he published in ACM SIGCOMM, ACM SIGMET-
RICS and IEEE INFOCOM, and many others. He is
the steering committee chair of IEEE/ACM IWQoS.
He served as the TPC co-Chair of IEEE/ACM
IWQoS 2020. His recent research focus on smart
energy systems. He won the Best Paper Awards of
ACM e-Energy 2018 and ACM Buildsys 2018. He
has served as a TPC co-Chair of the ACM e-Energy
2020 and he will serve as General co-Chair of the

ACM e-Energy 2022. He is a steering committee member of ACM e-Energy.
He serves as a founding area editor of ACM SIGEnergy Energy Informatics
Review. His research has been adopted by industry, e.g., Henderson, Huawei,
and IBM. He won the Global Innovation Award, TechConnect, in 2017. He
got his B.Sc., M.Sc., Ph.D. from Peking University, Case Western Reserve
University and Simon Fraser University, all in Computer Science.

Zhu Han (Fellow, IEEE) received the B.S. degree
in electronic engineering from Tsinghua University,
in 1997, and the M.S. and Ph.D. degrees in electrical
and computer engineering from the University of
Maryland, College Park, in 1999 and 2003, respec-
tively.

From 2000 to 2002, he was an R&D Engineer of
JDSU, Germantown, Maryland. From 2003 to 2006,
he was a Research Associate at the University of
Maryland. From 2006 to 2008, he was an assistant
professor at Boise State University, Idaho. Currently,

he is a John and Rebecca Moores Professor in the Electrical and Computer
Engineering Department as well as in the Computer Science Department at the
University of Houston, Texas. His research interests include wireless resource
allocation and management, wireless communications and networking, game
theory, big data analysis, security, and smart grid. Dr. Han received an NSF
Career Award in 2010, the Fred W. Ellersick Prize of the IEEE Communi-
cation Society in 2011, the EURASIP Best Paper Award for the Journal on
Advances in Signal Processing in 2015, IEEE Leonard G. Abraham Prize
in the field of Communications Systems (best paper award in IEEE JSAC)
in 2016, and several best paper awards in IEEE conferences. Dr. Han was
an IEEE Communications Society Distinguished Lecturer from 2015-2018,
AAAS fellow since 2019 and ACM distinguished Member since 2019. Dr. Han
is 1% highly cited researcher since 2017 according to Web of Science. Dr. Han
is also the winner of 2021 IEEE Kiyo Tomiyasu Award, for outstanding early
to mid-career contributions to technologies holding the promise of innovative
applications, with the following citation: “for contributions to game theory
and distributed management of autonomous communication networks.”

16

APPENDIX A
OMITTED PROOFS AND INFERENCE PROCEDURES

A. Proof of lemma 1

Denote the distribution of data in client 8 as D(38), and
the global distribution in all clients as D(3). Similarly, we
denote the distribution of I (:)

8,<
in each clients and the global

distribution as D(I (:)
8
) and D(I (:)), respectively.

Supposed we have accepted H0, then distribution of 38,< in
client 8 is identical to distribution of sum-up data in all clients,

D(38) = D(3). (21)

As a mapping of 38,<, distribution of I (:)
8,<

is also identical
to the overall distribution,

D(I (:)
8
) = D(I (:)). (22)

First, the exception of I:
8

is equal to the exception of I:
8,<

,
since the former is simply arithmetic average of "8 samples
of latter, i.e.,

E(ΔF (:)
8
) = E(I (:)

8
) = E(I (:)

8,<
). (23)

Equation (22) gives that distribution of I:
8,<

is identical to
I (:) for all 8, <, their exception is also equal:

E(I (:)
8,<
) = E(I (:)). (24)

Given these insights, we can rewrite (9) as:

?
(:)
8

= P(|ΔF (:)
8
− E(ΔF (:)

8
) |) ≥ n)

= P(|ΔF (:)
8
− E(I (:)) |) ≥ n)

≤ 24G?
(
− 2n2"8

(1 (:) − 0 (:))2

)
. (25)

Recall the definition of H0:

H0: Data in a client is IID distributed.

We define a set of events A(n):

A(n): |ΔF (:)
8
− E(I (:)) | ≥ n .

When estimating the skewness of a client, we measure the
value of n to satisfy A(n), and target at the satisfaction of H0.
In other words, we calculates the posterier possibility of H0
from A(n), or P(H0 |A(n)). On the other hand, ? (:)

8
exactly

represents the possibility of A(n) assuming the satisfaction of
H0, or P(A(n) |H0). Bayesian theorem yields

P(H0 |A(n)) =
P(A(n) |H0)P(H0)

P(A(n)) (26)

Since Hoeffding’s inequality only provides a possibility
bound, instead of the exact value, we conduct a heuristic
inference on (26). If the value of P(A(n) |H0), or ?

(:)
8

,
increases, since prior possibility P(H0) is independent form
n , at least one of the alternative must be satisfied for the
enforcement of (26): 1) P(H0 |A(n)) increases, or 2) A(n)
increases.

If the first alternative is true, it directly comes to the first
alternative of Lemma 1. Supposed that the first alternative is
false, then the client is no longer IID. Therefore, its expectation

of I (:)
8,<

now differs from the global one, I (:) . We denote the
expectation as E(I (:)) + ΔI (:)

8
.

The shape of distribution of P(A(n)) is similar to that of
P(A(n) |H0), while centering at different expectations. With
these insights, we can review the second alternative: for any
value of ΔF (:)

8
, when it is approaching E(I (:)), which leads to

an increase of ? (:)
8

, it is also likely to be approaching E(I (:))+
ΔI
(:)
8

, which leads to an increase of P(A(n)). Obviously, it
is only possible when ΔI (:)

8
is relatively small compared to n .

Therefore, we can expect a smaller ΔI (:)
8

when we shrink the
value of n , which indicates a lower skewness.

In conclusion, the two alternatives to enforce (26) can be
inferred as the two alternatives of Lemma 1, that higher ? (:)

8

indicates a higher likelihood to accept H0, or directly reveals
lower client skewness.

B. Proof of theorem 1

Denote the clients participated in round C as #C . Consider
(7) and (8), we have:

E(I (:)) = 1∑#
8=1 "8

#∑
8=1

"8∑
<=1

I
(:)
8,<

≈ 1∑
8∈#C

"8

∑
8∈#C

"8∑
<=1

I
(:)
8,<

=
1∑

8∈#C
"8

∑
8∈#C

"8ΔF
(:)
8

= ΔF
(:)
. (27)

From (27), we conclude that the estimation of E(I (:)) is
given by the weighted average of uploaded weight changes,
weighted by their numbers of data.

Credibility of ΔF
(:)

as an estimation of E(I (:)) can be
analyzed via the Hoeffding’s inequality. Recall (27), ΔF

(:)
is

the average of I (:)
8,<

in all clients in #C . Equation (1) yields,

P(|ΔF (:) − E(ΔF (:)) | ≥ n)

= P(|ΔF (:) − E(I (:)) | ≥ n)

≤ 24G?
(
−

2n2"#C

(1 (:) − 0 (:))2

)
, (28)

where,
"#C

=
∑
8∈#C

"8 (29)

It may seem illogical that the estimation of E(I (:)) in
(25), which will be used to give a probabilistic bound by
the Hoeffding’s inequality, is also bounded by Hoeffding’s
inequality. However, it is numerically reasonable, because the
latter bound is much tighter than the former. When (25) and
(28) are given the same confidence level, bound of n in
the latter estimate will be "#C

/"8 tighter than the former.
Therefore, in (25), the uncertainty given by estimating E(I (:))
is comparatively negligible.

As is discussed in Section V-B, another issue is raised that
the credibility of ΔF

(:)
requires that the distribution of data in

17

clients of #C should be identical with the global distribution,
which is exactly impractical. However, with our effort to
improve the performance of FL, the skewness of participating
clients is gradually decreasing, making our estimation effective
in practice.

C. Derivation of &8

The skewness estimation of client 8 by multiplying all
utilized dimensions are given by

%8 =

 ̂∏
:=1

24G?
(
− 2(n (:))2"8
(1 (:) − 0 (:))2

)
= 2 ̂

 ̂∏
:=1

4G?

(
− 2(n (:))2"8
(1 (:) − 0 (:))2

)
. (30)

Recall that higher % (:)
8

indicates lower skewness, and the
range of % (:)

8
is [0, 1]. Therefore, a higher %8 also indicates

lower skewness.
1 (:) and 0 (:) are the upper and lower bounds of I:

8,<
.

A normal method is requesting the minimum and maximum
from all participating clients and deriving the tightest bound.
However, it increases the communication overhead by 2×, and
breaks the strict privacy restriction of FL. Therefore, we use a
looser bound, which is equal for all dimensions. Denote them
as 1<0G and 0<8=, i.e.,

1<0G = max
∀8,<,:

(
I
(:)
8,<

)
, 0<8= = min

∀8,<,:

(
I
(:)
8,<

)
(31)

Since (1) only requires 0 and 1 as bounds, without require-
ment of tightness, we are able to use 1<0G and 0<8= to take
place of 1 (:) and 0 (:) in all ̂ dimensions, without loss of
mathematical correctness. Rewrite (30),

%8 = 2 ̂
 ̂∏
:=1

4G?

(
− 2(n (:))2"8
(1<0G − 0<8=)2

)
. (32)

Take the logarithm on both sides, and simplify the form,

(̂ ln 2 − %8) (1<0G − 0<8=)2
2

= "8

 ̂∑
:=1

(
(n (:))2

)
(33)

Recall (12), we can find that the sum of (n (:))2 among all
dimensions is the square of the !2 norm between ΔF8 and
ΔF, and denote the final form as &8:

&8 =

√
(ln 2 − %8) (1<0G − 0<8=)2

2
=

√
"8 | |ΔF8 − ΔF | |2 (34)

where,

ΔF =
1∑

8∈#C
"8

∑
8∈#C

"8ΔF8 (35)

Eq. (34) shows that &8 is an inverse transformation of %8 ,
i.e., lower &8 indicates lower skewness.

D. Proof sketch of theorem 2

We emphasize that compared to INDSELFSPARRING,
FLEXSELFSPARRING only breaks the limit that the size of the
target arm set (_#) should be equal to the number of arms
selected each round (^). With our modification, the kernel of
INDSELFSPARRING, conversion to the Thompson sampling,
remains unchanged. Therefore, the proof of Theorem 2 is
consistent with the proof of Theorem 1 in [23].

Here we briefly sketch the proof: first we show that in the
infinite horizon, each client will be selected for infinite times.
As a result, parameters of beta distribution (� and �) will
permanently increase, and the beta distributions will eventually
converge to the Dirac distribution. Therefore, the bandit will
converge to optimal clients, since the sample result of the Dirac
distribution is constant. The detailed proof is available in [23].

E. Proof sketch of theorem 3

As is described in Appendix A-D, our modifications on
FLEXSELFSPARRING does not hurt the Thompson sampling
process in INDSELFSPARRING. Therefore, the proof of The-
orem 3 is consistent with the proof of Theorem 2 in [23].

Here we briefly sketch the proof: FLEXSELFSPARRING
utilizes Thompson sampling, where the dueling results are
considered as binary rewards, and is handled in the way of
stochastic bandits. First, we show that compared to someone
drawing clients with a fixed probability distribution, a player
who utilizes Thompson sampling can have the optimal regret,
which is the theoretical basis of each stochastic bandit algo-
rithm. Then, the superiority of Thompson sampling extends
from playing against a fixed distribution to a drifting but
converging probability distribution. Finally, by merging the
above insight and Theorem 2, the no-regret rate is calculated
based on the definition of approximate linearity. The detailed
proof is available in [23].

