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Abstract—The advancement of nanosatellite techniques has boosted the growth of satellite-originated data and applications. Satellite
edge computing (SEC) is envisioned to provide in-orbit processing of the sensed data to save the scarce terrestrial-satellite
communication resources and support mission-critical services. While most of the existing SEC studies mainly focus on general
computing tasks, we present a two-tier collaborative processing framework for the important and unique hyperspectral image (HSI)
processing task. Our framework carefully selects bands out of the collected HSIs and sends them back for further analysis. We first
conduct a comprehensive data analysis to reveal the non-trivial relationship between the band selection and the eventual analytic
performance. We then formulate the band selection problem in this collaborative setting as a utility maximization problem that jointly
considers the analytic, energy, and communication factors. A novel multi-agent reinforcement learning approach, named MaHSI, is
proposed to solve it in the dynamic SEC environment. Our multi-agent design judiciously embeds the complex correlations among
bands as collaborations among agents and significantly reduces the exploration space. Extensive experiments on real-world HSI
datasets prove that our approach not only outperforms the existing classical band selection algorithms in accuracy and inference speed

but also brings the highest utility to the satellites.

Index Terms—satellite edge computing, collaborative computing, multi-agent reinforcement learning, hyperspectral image processing,

band selection

1 INTRODUCTION

O VER the past two decades, low earth orbit (LEO)
nanosatellite launches have grown significantly due to
the resurgence of the space industry and declining cost of ac-
cessing space [1]. The number of LEO satellites has reached
nearly 4000 and is expected to grow 110% by 2025 [2] [3].
These satellites play an integral part in the next-generation
wireless networks and continuously provide networking or
monitoring services. Currently, about 45% of LEO satellites
conduct earth observing tasks [2]. Among these tasks, the
hyperspectral imaging task is one of the most important.
Hyperspectral imaging is a remote sensing technique that
collects the electromagnetic spectrum from the visible to the
near-infrared wavelength ranges, usually from 400 to 2500
nm. The generated hyperspectral image (HSI) is a 3D image
cube that contains hundreds of bands at different wave-
lengths along with the usual spatial information. With the
resourceful spectral and spatial information captured, HSIs
have been widely applied in fields such as agriculture [4],
mineral mapping [5], and landscape change detection [6].
In particular, HSIs are increasingly deployed for mission-
critical applications that require in-time data processing,
e.g., forest fire detection [7] and gas leakage detection [8].
However, there exists a huge gap between the amount
of data generated and the amount of data that can be
transmitted. The current satellites adopt a bent-pipe archi-
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tecture to communicate with the ground station [9]. In this
architecture, ground stations send commands to satellites,
and satellites reply with raw data. For any ground station
observer, an LEO satellite usually has 3 to 5 good contacts
every day with the ground station; each contact lasts for
around 10 minutes [10]. Compared to the traditional mono-
lithic satellites, nanosatellites have even scarcer energy and
communication capabilities. A limited-sized nanosatellite
can only harvest 7.1W at peak time from the onboard solar
panel [11]. As for communication, existing hyperspectral
imaging nanosatellites can only allow a maximum 7.5 Mbps
data rate for downlink transmission [12]. In contrast, a single
high-resolution HSI can even reach more than 1 GB per
scene [13]; hundreds of Gigabytes of data can be generated
every day by a satellite [10].

Constrained by the limited energy and communication
resources, and driven by the demand for in-time intelligence
extraction from the growing mission-critical applications,
satellite edge computing has started to gain researchers’
attention recently. For satellite edge computing, comput-
ing power is deployed on a satellite, so that data can be
processed locally on the satellite, and only the extracted
information is transmitted to the ground station [11] [14]
[15] [16]. For example, GomX-4B launched in 2018 carries
CPU, GPU, and VPU to provide in-orbit data processing
[12]. While it is desirable to in-orbit process hyperspectral
image, hyperspectral image processing tasks differ from
ground-based image processing tasks in that it is fully
satellite-originated and exhibit unique characteristics. First,
hyperspectral images have far more channel information
than classical RGB images. A typical hyperspectral image
can have up to 200 channels, whose high dimensions make it
impractical to directly apply classical machine learning ap-
proaches. Second, both spatial and spectral features of HSI



need to be considered for accurate analysis. Furthermore, a
strong correlation exists among the spectral bands. Third,
satellite communication differs from current on-ground cel-
lular communications in that it is essentially intermittent,
and highly emphasizes energy consumption.

Due to the overwhelming band information, after trans-
mitted to the ground, the raw data usually go through an-
other dimensionality reduction process, like band selection
[17] [18], to reduce the dimensions so that the downstream
analytic tasks are possible. In band selection operations,
a set of representative bands are selected to include most
information of the original band set. Compared with other
feature extraction techniques that are based on complex data
transformation, band selection preserves the main semantic
information in an HSI without losing its spectral property.
With the rise of satellite edge computing and inspired by
the great benefits of band selection in data size reduction, it
seems natural and promising to move this previously ground-
based pre-processing operations to the satellite, so that infor-
mative bands can first be selected and more hyperspectral
images can be transmitted to the ground within the same
communication time.

However, simply applying traditional band selection
methods in satellites is not desirable for two main reasons.
First, the traditional band selection methods still adopt
a simple band selection strategy and only select a fixed
number of bands to preserve fidelity as much as possible.
However, our analysis of the real-world HSI dataset in the
following section reveals that different categories of samples
have different band selection patterns to reach the optimal
analytic performance. Choosing an appropriate band size
needs tremendous manual effort and easily leads to sub-
optimal analytic performance. Second, traditional ground-
based band selection methods take no consideration of the
satellite edge computing components, like energy, com-
munication, etc. With fluctuating network conditions and
limited satellite-terrestrial contact windows, transmitting
too many bands under bad network conditions can cause
high packet loss; transmitting too few bands under good
network conditions easily results in low network utilization.
Therefore, to fully utilize the valuable in-orbit computing power, a
more adaptive and satellite-native terrestrial-satellite collaboration
framework has to be devised for hyperspectral image processing.

In this paper, we present the first work for two-tier
hyperspectral image processing based on satellite edge
computing and terrestrial-satellite collaboration. We first
conduct thorough data analysis to reveal the non-trivial
relationship between the band selection in hyperspectral
image processing and the eventual analytic performance
and identify the characteristics of the complex satellite-
terrestrial communication networks. We then systematically
model the critical energy and communication factors in
satellite edge computing. Based on the novel insights and
models, we present our two-tier hyperspectral image pro-
cessing framework where a subset of informative bands
is first selected using satellite edge computing; the result-
ing bands are then transmitted to the ground station for
eventual analysis. The core problem of our framework, the
band selection problem, is formally formulated as a utility
maximization problem. A novel multi-agent reinforcement
learning approach, named MaHS], is designed to judiciously
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incorporate the dependence among bands via interpreting
it as a multi-agent collaboration. It leverages a deep Q-
learning architecture to learn the optimal state-action pairs,
and adaptively make band selection decisions considering
the dynamic orbital situations. Extensive experiments based
on eight real-world HSI datasets validate the performance
of our design.

To better identify the research gaps between the current
research efforts and our orbital hyperspectral image process-
ing requirements, as well as our contributions, we further
summarize the related work as follows:

1.1 Satellite Edge Computing

Denby et al. [11] present novel parallel pipelines for im-
age edge processing on nanosatellites, which dramatically
reduces the latency compared to traditional bent-pipe ar-
chitecture. To adapt to the limited bandwidth and unstable
connectivity in space information networks, researchers in
[19] presents a distributed machine learning system that
applies dynamic model compression techniques. In [20],
the suitability of three organization paradigms for appli-
cations and unique characteristics for satellite edge are
discussed. Researchers in [21] compare the performance
between CPU and GPU on in-orbit advanced algorithms
for heterogeneous system architecture. Researchers in [16]
propose a hybrid model of non-orthogonal multiple ac-
cess (NOMA) and frequency division multiple access to
facilitate the multi-user dual computation offloading. While
several studies have started to examine the potential of
satellite edge computing, they mostly focus on leveraging
computing power on satellites to serve ground applications
[19] [20] [21], targeting general computation tasks [11] [16]
[22], or directly running ground-based algorithms on board,
which leads to sub-optimal performances [14]. Different
from them, our work focuses on applying satellite edge
computing for a satellite-originated hyperspectral imaging
processing task, with unique characteristics. We establish
an energy model and a communication model and explore
the potential opportunity for energy and bandwidth saving
using satellite edge computing with HSI band selection. A
multi-agent reinforcement learning approach is further pro-
posed to specifically handle the complex band correlation
and large exploration space.

1.2 HSI Band Selection

Band selection algorithms can be categorized into unsuper-
vised and supervised methods. In unsupervised methods,
clustering-based, searching-based, and ranking-based meth-
ods are the mainstream. Clustering-based methods like [17]
cluster the spectral bands and select the cluster centers as
band selection. Searching-based methods [18] usually apply
heuristic methods to search the best band subset. Ranking-
based methods [23] try to assign each band a score by
estimating their significance. Different from unsupervised
methods, supervised band selection methods utilize prior
knowledge for band selection. Researchers in [24] present
a method for band selection based on the local spatial
information and classification label of HSI. Arab et al. in
[25] apply reinforcement learning for band selection in a
general context. However, their proposed method trains



dedicated RL models for each dataset, which is not practical
when new HSIs are continually collected and transmitted in
the satellite setting. In addition, traditional band selection
methods purely aim at preserving fidelity of HSIs without
directly considering downstream analytic tasks. Our pro-
posed method can well handle the combination of analytic
performance, network, and energy condition, which is more
practical for a satellite edge computing environment. Over-
all, we also contribute to the band selection problem in the
remote sensing field by proposing a novel multi-agent re-
inforcement learning-based approach that achieves the best
end-to-end analytic performance in the space environment.

In summary, our main contributions are summarized as
follows:

o We present a novel two-tier collaborative computing
framework for the important satellite-originated hy-
perspectral image processing task.

e In contrast to the classical fidelity-driven band se-
lection studies, we reveal the non-trivial relationship
between band selections and eventual analytic per-
formances from a novel analytic perspective. Specif-
ically, different categories of HSIs require different
bands; more bands do not necessarily lead to better
classification performance.

e We formulate the band selection problem in our
framework as a utility maximization problem, that
incorporates practical satellite edge system require-
ments and is proved to be NP-Complete.

o We propose a novel multi-agent reinforcement learn-
ing approach that judiciously embeds the complex
band correlation relationship and successfully learns
wise policy in the large searching space and the
dynamic environment. This is also the first work that
applies multi-agent reinforcement learning for HSI
band selection.

o Extensive experiments on real-world satellite com-
munication and the HSI dataset demonstrate that
our MaHSI not only outperforms the existing SOTA
band selection algorithms and the full-band strategy
in classification accuracy by 20% on average but
also achieves the highest HSI utility in the dynamic
environment.

The rest of this paper is organized as follows. We first
introduce the related work in section II. In section III, we
present the data analysis and motivation for this work. Sec-
tion IV describes the system framework and the formulation
of our utility maximization problem. We then introduce our
MaHSI method for adaptive HSI processing at the satellite
edge in section V. The evaluation for MaHSI is presented in
section VI. We conclude our work in section VIL

2 DATA ANALYSIS AND MOTIVATION

In this section, we reveal the non-trivial relationship be-
tween band selections and analytical results, and the unique
satellite-terrestrial downlink characteristics via extensive
data analysis.

2.1 Analysis of HSIs Band Selection and Classification

While previous band selection algorithms are developed to
preserve the information fidelity as much as possible, in this
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part, we examine the end-to-end relationship between band
selection and the eventual classification results from an ana-
Iytic perspective. Different from ordinary image classification,
hyperspectral image classification assigns individual pixels
to a set of classes; it is the fundamental task for a majority
of hyperspectral image applications. We choose the classical
clustering-based ISSC approach [17] as the band selection
algorithm, SVM as our classifier, and five commonly used
HSI datasets, Indian Pines, Kennedy Space Center, Pavia
University, Salinas Scene [26], and HyRANK Loukia [27] as
our dataset. They are all widely used approaches and datasets in
the remote sensing community for hyperspectral image processing.
We use Indian Pines to illustrate our observations due to
space limits. Results of other datasets can also be found in
the supplementary material, all of which can support our
observations here. Indian Pines dataset is an agricultural
hyperspectral image dataset captured by the AVIRIS sensor
over the Indian Pines test site in Northwest Tippecanoe
County, IN, USA. This dataset has 16 classes and 200 bands.
Overall accuracy, which is a common metric for HSI clas-
sification tasks [28], measures the portion of the number of
hyperspectral pixels that are classified correctly out of the
number of test samples. We summarize our observations as
follows.

The overall accuracy gain diminishes in general as
more bands are selected. Fig. 15(a) shows the relationship
between the overall accuracy and the number of selected
bands on the Indian Pines dataset. Generally speaking,
the classification performance increases gradually as more
informative bands are selected. However, the increasing
speed drops quickly after we select a certain number of
bands. It takes 186 bands to reach the optimal performance
of 88.47 % as annotated in Fig. 15(a), while we can already
achieve a close to optimal performance, 85.05%, with about
40 bands. It indicates that we can reduce nearly 80 % of the
transmission amount at the cost of only about 3% accuracy
loss. This discovery provides us with a valuable chance to
make a trade-off between classification performance and
cost-saving when running in-orbit HSI processing.

The optimal number of bands varies across different
HSI categories. Though we have presented the general im-
pact of the band sizes on the overall accuracy, an HSI dataset
commonly contains imbalanced classes, which makes the
overall classification result skew towards the result of a few
dominant classes. To comprehensively examine the effect
of band sizes on different HSI categories, we then perform
band selection on all 16 classes of Indian Pines separately.
The results of all classes are listed in Appendix B in the
supplementary material. Here we select four representative
classes, Grass Pasture, Grass Tree, Grass Pasture Mowed,
and Hay Windrowed, for illustration purposes. As shown
in Fig. 15(b), the optimal band number for different classes,
are quite different. The classification performance of classes
like Hay Windrowed reaches the maximum at 66 bands and
begins to drop after that. On the contrary, the classification
performance of Grass Pasture keeps increasing until the full
bands are selected.

Different classes have different optimal band selec-
tions. We further examine the exact band selected by the
band selection algorithm given a target band size. In Fig.
15(d), we visualize the optimal 40 bands for the above-
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Fig. 1: Anatomy of the classification result on Indian Pines. (a) The relationship between the number of selected bands and
the overall accuracy. (b) The relationship between the number of selected bands and the accuracy of four classes in Indian
Pines. (c) 40 optimal bands in shaded color for 4 classes in Indian Pines. Class A: Grass Pasture, B: Grass Trees, C: Grass

Pasture Mowed, D: Hay Windrowed.

mentioned 4 classes. The band being selected is shaded.
We can see that the optimal band subset varies across the
selected 4 classes. Though classes may have some shared
optimal bands, for example, the algorithm selects bands 1,
10, 18, and 58 for both Grass Trees and Hay Windrowed,
a universal band subset that suits well for all the classes
hardly exists.

From these results, we can observe the non-trivial rela-
tionship between the band selection and the eventual classi-
fication performance, which can hardly be summarized into
fixed rules. This motivates a more intelligent band selection
algorithm with intrinsic HSI content in consideration.

2.2 Analysis of Satellite-Terrestrial Downlink Dynamics

In this part, we analyze the real-world satellite-terrestrial
network from three X-band LEO satellites (JPSS, TERRA,
and NPP) for earth observations and reveal the challenging
network conditions. The dataset contains link measurement
data for a month, starting from September 2020 [10] [29].
Our major findings are as follows.

The satellite-terrestrial communication is intermittent.
An LEO satellite typically follows a polar orbit and takes
about 90 to 120 minutes to complete one full orbit [30].
The position of the satellite in its orbit from the view of its
ground-station pair is defined by azimuth angle ¢ and ele-
vation angle 0 as illustrated in Fig. 3. Based on our dataset,
one contact window between an LEO satellite and ground
station pair mostly lasts from 5 to 15 minutes and it happens
3 to 5 times daily. The variation of the contact window for
each satellite pass is presented in Fig. 2(a). All three satellites
show great variations in the contact windows’ length with a
standard deviation of around 3 minutes.

The satellite-terrestrial network is fluctuating and with
limited data rate. We further analyze the satellite-terrestrial
network situation. Our analysis reveals that the data trans-
mission rate is fluctuating for every contact window. As
Fig. 2(b) shows, for one contact window, different satellites
can have different data rate patterns. While JPSS and NPP
maintain a relatively high average rate of around 8 Mbps
but with high fluctuation, TERRA has a relatively low and
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Fig. 2: (a) Variations of the contact window for one satellite
pass of three satellite ground-station pairs. (b) Fluctuating
bit rates for one contact window for three different satellites.

stable data rate with an average of 3 Mbps and a standard
deviation of 0.25 Mbps.

In summary, from these results, we can conclude that
scarce satellite-terrestrial network resources have to be care-
fully used to maximize the LEO satellites’ value.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first formally introduce our two-tier HSI
processing framework with satellite edge computing. We
systematically model the key components in our system and
formulate our band selection problem as a combinatorial
utility maximization problem.

3.1 HSI Satellite Edge Computing Framework

Fig. 3 shows our two-tier hyperspectral image processing
framework over the terrestrial-satellite networks. In our
framework, the satellite is equipped with a hyperspectral
imager to capture HSIs, an onboard edge computing sys-
tem for band selection, and a communication system for
HSI transmission. Ground station is in charge of the final
classification. A band selector is first trained on the ground
and deployed on the onboard computation system beforehand.



Parameter  Description Unit
F Computation capability of LEO satellite. =~ CPU cycles/s
Di Required CPU cycles for processing CPU cycles
HSI. d;
tp A time period. s
T; Sum of processing and transmission s
time for HSI image d;.
b Size of a single band with fixed shape. MB
Si Size of HSI d;. MB
i Average transmitting data rate of LEO  MB/s.
satellite when transmitting HSI d;.
Rs Symbol rate for a specific satellite. MB/s
Py Power of energy harvesting system. W
Py Downlink transmission power of LEO. W
P, Power budget for running all other W
functions on the satellite.
C Energy capacity of LEO satellite. ]
Egen Energy generated during a time period. ]
Ei,. Energy cost for transmitting HSI d;. J
Eimp Energy cost for processing HSI d;. J
€ Energy factor based on the chip archi-
tecture.
d; i¢p, HSLin the processing queue of satel-
lite.
ci Number of bands in HSI d;.

TABLE 1: Important Notations and Symbols.

After being launched, the satellite performs hyperspectral
imaging and stores the captured HSIs locally. When a
contact window comes, all stored HSIs are organized in a
queue for processing and transmission. For each HSI, the
satellite selects a subset of bands based on the HSI's content,
energy, and network conditions. The selected bands are then
transmitted through the downlink to the ground station for
further analysis, e.g., classification or object detection. The
transmission process terminates when the contact window
ends, all HSIs are transmitted, or energy drops to a certain
degree that cannot afford extra communication. After a
contact window, the satellite stops the transmission and
continues to perform hyperspectral imaging. The HSIs left
in queue will be processed when a new contact window
arrives.

3.2 Energy Harvesting and Consumption Model

We next present the energy harvesting and consumption
models for our systems. All the important notations we use
in this paper are further summarized in Table 1 together
with its meaning and unit, if applicable. The energy of
nanosatellites mainly comes from the onboard energy har-
vesting system, e.g., solar panels.

Let P}, denote the power of the energy harvesting sys-
tem, given a time period t,, we model the energy generated
Eger as follows:

Egen = Pitp. 1)

The energy consumption in our framework mainly con-
sists of two parts: the computation cost when running band
selection and other computing functions and the communi-
cation cost when transmitting HSIs to the ground station.

Similar to [31], we define the computation cost Eémp for
processing an HSI image d; as follows:
E(imp = E(F)zpiv (2)
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Fig. 3: Two-tier HSI processing framework. @ is the elevation
angle and ¢ is the azimuth angle.

where F' is the computation capability, p; is the required
CPU cycles for processing HSI d;, € is the energy factor
based on the chip architecture [32].

After local processing, the selected bands are transmit-
ted to the ground station through the downlink. Let s;
denote the size of the HSI to be transmitted, P; denotes the
downlink transmission power, and r; denotes the average
downlink data rate when transmitting d;, we can model the

energy cost ¢ of transmitting d; as follows:

i
E com

= P ®
Ti
The data size s; is mainly determined by the height, width,
and selected band number of the HSI. For simplicity, we
assume that all HSIs captured by the same satellite have
equal width and height, and their size is proportional to
their band number. Let ¢; denote the number of bands in
d;, b denote the size (MB) of a single band with fixed shape
w X h, the energy cost of transmitting d; thus can be further
modeled as:

Ei

C; b
com S

=P;— 4)

T

3.3 Communication Model

In the current system, since the communication link is
mostly used for downlinking pre-processed HSIs to the
ground, and uplinking is infrequently used for control pur-
poses, we mainly model the downlinking mode for earth
observation satellites in this paper. Nowadays, most digital
satellite transmission has adopted the second generation
of digital video broadcasting (DVB-52) standard to realize
adaptive coding and modulation (ACM) so that a higher
capacity gain and a wider range of code rates can be
supported [33]. Based on this standard, spectral efficiency
pi in unit bits per symbol can be found from channel Signal
to Noise Ratio (SNR) by looking up the error performance
table provided by official documents [33]. Therefore, given
the SNR for every second, the resulting bit rate r; when
transmitting HSI d; can be calculated by

Ti = p; X R 5)

where I, represents the symbol rate for a specific satellite.
The symbol rate is used to describe the transmission rate
of signals for a particular connection. It is determined by



modulation factor, FEC rate, and FEC coding method and is
regarded as the constant given a specific type of satellite. For
example, for a satellite following a configuration of {QPSK,
21/44, Turbo}, the symbol rate is 0.131 MB/s [34].

We denote the total time cost for a satellite to send out
an HSI as T;. Since we assume HSIs are processed in a
pipeline way, we only consider the processing time and the
transmission time that consume the satellite’s battery life
and contact duration. Formally, the total time cost T; of a
satellite to process an HSI image d; can be represented as

cib  pi
T; = =t

where the computation capability F’ is specified by the type
of CPU. For example, the computation capability of Jetson
TX2is 1.2 GHz [35].

(6)

3.4 Problem Formulation

Suppose a satellite has I HSIs at its local storage. Each
HSI is denoted by d;,i € {1,.,I}. The selected band
subset is represented using a multi-hot vector x; =
(i1, Zi2y e i), Tim € {0,1},m € {1,..., M}, where
M is the band number of the raw HSIs d;. We use a
metric A to describe the resulting analytic performance of
the transmitted HSI with its selected bands. Considering
the importance of classification tasks [28], we refer A to
the overall accuracy in the HSI classification throughout
this paper. Other quantifiable analytic metrics in satellite
applications also apply. We represent the overall accuracy
of the HSI d; with its selected bands x; as A;. A; can be
written as:

A = A(f(2s,di), yi)s ()

where y; represents the classification ground truth of d;
and f represents an HSI classifier. Common HSI classifiers
include HybirdSN [36], SpectralNet [37] and EvaluateNet
[38].

We assume the satellite is charged to its energy capacity
C at the beginning of a contact window with 7,4, seconds.
Based on the selection decisions x;, we also rewrite the

corresponding energy cost E?, . as:
Eéom = 1a zm_l ’L’m7 (8)
Ti
and the time cost T} as:
b miM T )
Ti _ Zm—l z,m + & (9)

Ti F
During the contact window, we try to transmit all the
stored HSIs while reducing the energy cost and maximizing
the classification performance. The utility for transmitting
an HSI d; thus is defined as:
Ui = ad; — B(E!

cmp + Eéom) - ’YT‘Z (10)
where o, 3, and v are the positive weight factors to adjust
the preference. For our two-tier hyperspectral image pro-
cessing framework, we target selecting the right band subset
for all the HSIs in the storage so that the sum of utilities

can be maximized. Correspondingly, we sum up the utility
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defined in equation (10) of all HSIs and present the utility
maximization problem as follows:

max Z U; (11)
iel

st. > (Blpp+ Elom) SC+ (Py— P)Tae (12)
iel

ZTi S Tmaac (13)
iel

Tim € {0,1}, (14)

The decision variable z;,, means whether we select the
band m of an HSI d; for transmitting to the ground or
not. It influences the downloading time, energy cost, and
classification accuracy directly. Constraint (12) guarantees
that the total energy consumption in the task won’t exceed
the sum of capacity and energy harvested during the contact
window. Constraint (13) defines that the time cost for pro-
cessing and transmitting HSIs should be within the contact
window. Selecting too many bands may violate the energy
constraints (12) and time constraints (13).

Theorem 1. Our utility maximization problem € is NP-
complete.

Proof. See Appendix A in the supplementary material. [

From the analysis, we can see that our problem is non-
trivial in an offline scenario. The problem becomes even
more complicated when we handle it in an online scenario,
where network and energy situations change over time.
Classical model-based solutions may not well adapt to the
dynamics of these factors and make sub-optimal decisions.
In addition, satellites hover over different parts of the
earth and correspondingly collect multiple HSIs of different
scenes and landforms. The relationship between the content
and the classification results also makes the typical models
hard to capture, as we have demonstrated in Sec. 2.

The recent success in deep reinforcement learning offers
us an alternative way to solve this complex problem [39]
[40]. Reinforcement learning targets maximizing expected
total reward in a decision process. While single-agent deep
reinforcement learning cannot perform well when the action
space is large, in this paper, we design a novel multi-agent
deep reinforcement learning approach to solve our utility
maximization problem.

4 MuULTI-AGENT DEEP REINFORCEMENT LEARN-
ING FOR ADAPTIVE BAND SELECTION

In this section, we present MaHSI, a multi-agent deep re-
inforcement learning-based solution for two-tier HSI pro-
cessing. We first illustrate the necessity and advantage of
a multi-agent solution in detail. Then, we present how
we design the multi-agent deep reinforcement learning to
adaptively make decisions at the satellite edge and solve
our utility maximization problem.

4.1 Necessity of a Multi-Agent Solution

We first illustrate the necessity of a multi-agent solution
by revealing the large exploration space in our problem.
Suppose we have an HSI containing 100 bands. With the
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single-agent reinforcement learning approach such as DQON
[41], we need a model with an action space of 2100 where
each action is a unique combination of bands. The action
space grows exponentially as the band number increases. It
is unrealistic either to store or run such a huge model, not
to mention training.

Multi-agent reinforcement learning (MARL) emerges as
a promising solution to reduce action space, enhance in-
formation sharing and enable distributed design. Recently,
MARL-based methods have achieved SOTA performance
in many networked systems scenarios. Researchers in [42]
propose a MARL approach to sample several representative
video frames for video classification. In [43], RL agents
are deployed at different edge servers to make caching
strategies individually while learning policy collaboratively.
Researchers in [44] design a joint charging and relocation
recommendation system for e-taxi drivers with MARL. In
[45], each agent separately tries to solve its multiarmed ban-
dit problem independently from the others and makes the
data-offloading decision with price and risk awareness. Dif-
ferent works come with different representations of agents
and embedding of other key components in MARL. How
to apply the MARL framework to the hyperspectral image
processing applications has not been studied yet. Compared
to existing solutions, our MaHSI framework is carefully
designed for adaptive HSI processing on LEO satellites. The
proposed framework novelly splits an HSI into multiple
band subsets and assigns them to a single agent, which
dramatically reduces the action space and enables parallel
processing for quick band selection. In addition, it also takes
account of the energy and time conditions and perform wise
decisions in resource-constrained scenarios. In the follow-
ing, we present the detailed design for instantiating the
multi-agent reinforcement learning framework in our two-
tier hyperspectral image processing scenario.

4.2 Design

We formulate our utility maximization problem as a Markov
Decision Process which involves episode, state, action, and
reward. We present our design for each of them as follows.

Episode: We model the episode in our MARL algorithm
as an HSI transmission process during a contact window.
For each HSI d; to be processed at time ¢, agents select and
transmit the selected band subset, then move to the next
HSIs d;+1. The episode terminates when 1) all stored HSIs
are transmitted; 2) contact window runs out; 3) the energy
of the satellite runs out or is below a certain threshold.

Agent: We uniformly divide an original HSI into several
small band subsets with L bands, denoted by w; = [j x (L —
1)+1, ..., x L], where each term of w; represents the index
of a specific band. Each band subset w; falls into a specific
wavelength range W; = (W}, Wi, ], where W, —~and
Wi, g 1s the lower bound and upper bound of wavelength
range W, respectively. In this way, the relation information
between adjacent bands is preserved and it makes multi-
agent design possible. We then assign each band subset w;
to a single agent j for band selection. After all of the agents
produce band selection in their own band subset w;, we
merge them as the final band selection for HSI.

State: As shown in our analysis of Fig 15(a) and Fig
15(b), the optimal band selection is quite content-varying.
We input an informative feature vector f; ; to help the agent
develop content awareness for adaptive band selection. r;
is the predicted data rate of the future downlink. Note
that this attribute is closely related to our problem for-
mulations, for example, the constraints (12) and (13). With
the predicted data rate, agents are aware of the incoming
network conditions and thus can learn to make a trade-off
between classification performance and transmission and
energy cost. We further incorporate the current remaining
energy ¢; in our state design so that agents can learn a long-
term plan and use the remaining energy wisely to achieve
higher utility.

In summary, the state for each agent j of HSI d; is
denoted by s;,; = { fj,i, 74, €}, where

e fj is the feature vector extracted from the band
subset w; in the wavelength range ;.
_ fat it tHk—17 : : . .
o Ty ={rlr T,y } is the predicted incoming

data rate from time ¢t to¢t + k — 1.
e ¢; is the remaining energy at time ¢ of the satellite.



Action: With the observation of state s;j; and the
HSI image i, the agent j will take an action w; =
(#5250, 2l hat, € {0,141 € {1,..., L} 2f; =1
means that [-th band of w; is selected and 2}, = 0 oth-
erwise.

Reward: According to our problem (), we define the

reward R; for processing the HSI d; as follows:

R, = a(Ai - A;ull) - ﬁ(Eémp + Eéom) - 'YSI (15)

Here, o, 3, and v is the weight factor to adjust the agent’s
preference on classification, energy-saving, and transmis-
sion time. We can see there are some slight differences
between our utility function in (10) and the reward function
in (15). We make such a modification for two main reasons.
First, we subtract Az}u” from A;, which is the classification
result, e.g., overall accuracy, with the selected bands on d;
given by a well-trained classification model, in (15) to reduce
the variance among classification results of different HSIs
and makes the training more stable. Second, to satisfy the
constraint (13) in reinforcement learning and transmit HSIs
as much as possible, we add a penalty denoted by S; to our
reward function. To compute so, we first define the average
time we can assign to each HSI during contact with the
ground station as 1,4, Wwhere

T’”l ax
I .

Intuitively, if the time cost of processing and transmission in
total for each HSI is within T}, 4, we can transmit all HSIs in
a contact window. Based on 7,4, we define .S; to measure
the amount of time that the satellite has exceeded the 75,4
when transmitting d;. It will be set to zero when the actual
time cost is within 7}, ;. Formally, our penalty S; is defined

as:
0
Si =
Ti - Tavg

Network architecture In our MaHSI framework, we use
DOQON [41] as the RL training algorithm for each agent. DQN
is a value-based RL approach that seeks a critic to judge how
good a state-action pair is, denoted by Q(s,a). The basic
idea behind DQN is to estimate the action-value function
by using the Bellman equation as an iterative update. The
Bellman equation is written as follows:

Q(s,a) = Eg[r + pmaxQ(s',a’)|s, dl,

Tavg =

(16)

Ti S Tavg

17
E > Tavg- ( )

(18)

where r denotes the reward, p is the discounted factor and
Q(s',a’) is the state-action value of next step. DQN uses
a neural network named Q-network with parameter 6 to
approximate Q(s, a). The Q-network in our work is a multi-
layer perceptron (MLP) with stacked fully-connected layers
and Tanh as the activation function. The Q-network can be
trained to minimize the mean squared error in the Bellman

equation with the approximate target value y:
y=r+pmaxQ(s,a’;0), (19)
a/

where 0 is the parameter of the Q-network. Specifically, the
loss function for training DQN can be calculated as follows:

L(0) = Es 0, [(Es [yls, a] — Q(s, a; 9))2]a (20)

8

With the loss function, we then apply gradient descent to
update the network parameter:
0" =0 —nVeL(0), (21)

where 7 is the learning rate.

Algorithm 1 Adaptive HSI Processing with MaHSI in One
Contact Window

Input: A queue of captured HSIs (), remained contact win-
dow T, remained satellite energy E.
Output: HSIs with selected bands.
1: whileT > 0& E > 0 & !Q.empty() do
Pop a new HSI d; from Q).
Initialize an empty band set S = {} for d;.
Spilt d; into equal band subsets {d; ;,d2;,...,dn;}
according to the number of the agents of MaHSI.
Predict incoming data rate r;.
for agent j = 0 to N do
Apply PCA on d;; to extract features f; ;.
Concatenate f;;, r; and e; to form state s;
Input s;; to agent j to get selected band subset

O »® N7

bj,i~

10: S SUb;;.

11: end for

12: Transmit S to the ground through the terrestrial-
satellite network.

13: Obtain time cost ¢ and energy cost e.

14: T+T-t

15: E+~FE-e

16: end while

Terrestrial-satellite network prediction In addition to
the core policy network, our decision-making model relies
on the prediction of network conditions to handle dynamic
environments. For LEO satellites, though the orbit is fixed,
the network quality is also vulnerable to harsh weather
like rain, snow, and cloud [46]. Classical model-based ap-
proaches work for general link behavior and do not capture
link fluctuations due to specific satellite-ground station pair
design, which directly leads to lower accuracy of prediction.
Data-driven approaches have shown their effectiveness as
compared to simple heuristics in this sub-problem [47]
[48] [10]. Though orthogonal to this study, in this paper,
we adopt the Long Short Term Memory (LSTM) recurrent
neural network, which is commonly used for time series
prediction, to predict the incoming SNR [48] [49]. We do not
directly train an LSTM model to predict the datarate since
datarate is discrete according to the satellite communication
protocol and it leads to a non-differentiable loss function.
The input to the LSTM prediction network contains the az-
imuth angle and elevation angle at each time step and recent
bandwidth measurements. We then transform the predicted
SNR into datarate according to our communication model in
Section III. The effectiveness of the LSTM for the prediction
of the terrestrial-satellite communication network is also
evaluated in the experiment part. More advanced network
prediction approaches can also be used in our framework.
In summary, the overall model structure is presented in Fig.
4. After the policy network is trained, the detailed inference
process for MaHSI is also summarized in Algorithm 1.
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Fig. 5: HSI utility comparison of different approaches

4.3 Computation Complexity Analysis

The computation complexity of our MaHSI is two-fold, one
is the complexity of training and the other is the complexity
of inference. The train complexity simply depends on the
number of steps S we want to train it, denoted as O(SS) [50].
As for inference, we first assume that the inference time of a
neural network is proportional to its number of parameters.
Since we use the same network architecture for MaHSI with
a different number of agents, the only thing we need to
consider is the inference time complexity of the last layer, the
parameter number of which depends on the agent number
and HSI band number. Let P denote the parameter number
of all network layers except for the last one, for MaHSI with
N agents and an HSI with M bands, the tlme co J\/Plexny of
processmg an HSI can be calculated as O(N . Here,
O(P+ 5% ) represents the inference Complex1ty of one agent.

5 PERFORMANCE EVALUATION
5.1

HSI Data: We use eight available real-world HSI classifica-
tion datasets to simulate the captured HSIs with 200 bands
from an LEO satellite. The details for these datasets are
shown in Table 2. To resolve the inconsistency in shapes, we
first pre-process these datasets by expanding those datasets
with less than 200 band sizes with zeros-filled bands to
make them equal in total band size. The zeros-filled bands
won't be selected. Each dataset is then cut into uniform-
sized image tiles with the size of 100 x 100 x 200 to meet
the requirement of the downstream classifier.

Evaluation Setup

Dataset Size Number of Classes
IndiaPines [26] 145 x 145 x 200 16
SalinasScene [26] 512 x 217 x 200 16
PaviaUniversity [26] 610 x 340 x 103 9
KennedySpaceCenter [26] | 512 x 614 x 176 13
Botswana [26] 1476 x 256 x 145 14
Houston [51] 349 x 1905 x 144 17
HyRANKDioni [27] 250 x 1376 x 176 14
HyRANKLoukia [27] 249 x 945 x 176 14

TABLE 2: Details of our used HSI datasets.

Network data: We use the link data from a real-world
satellite, JPSS, to trace drive the network [10] [29]. JPSS
operates in the X band, which is a very common band
for earth observation. Link data contains the elevation and
azimuth angles of the satellite with respect to the ground
station, signal strength, and SNR (Signal to Noise Ratio) of
the received signal from the satellite. We add the attenuation
factor to the derived ideal capacity so that the data rate
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Fig. 6: Accuracy comparison of different approaches.

is within the range of 1~10 Mbps, which matches the
real-world downlink situation for hyperspectral imaging
nanosatellite [12].

HSI classifier: We use EvaluateNet [38] as our classifier.
EvaluateNet is a state-of-the-art classifier specially designed
for evaluating band selection algorithms. We follow the
same setting for the size of the input regional data cubes,
learning rate, and episodes as in the original paper.

Experiment environment and parameter settings We
implemented MaHSI using TensorFlow 2.2. We select 50%
of the dataset as the policy training set, and the left 50% is
used for policy testing. We train our MaHSI on a Ubuntu
20.04 machine with RTX 2070super GPU cards, Intel i7-
10700 CPU 2.90GHz, and 64GB memory. The trained MaHSI
is deployed on a Jetson TX2, which is a common testbed for
examining satellite edge computing [11] [52], for inference.
Several types of LEO satellites [53] [54] have also been
equipped with it to perform machine learning inference.
With a power of only 7.5W, Jetson TX2 is appropriate to
conduct deep learning tasks on LEO satellites with limited
energy. The original HSI is split into 50 small band subsets,
where each wavelength range uniformly covers 4 bands of
an HSI. We normalize each metric in the utility function to
(0,1] for fair aggregation. Both HSI utility and RL reward
are set with weight factors @« = 1,8 = 0.2,y = 0.2. The
learning rate for agents in MaHSI is set to 0.0005.

For SNR prediction, we train different prediction models
offline for different satellites respectively. The model takes
azimuth and elevation angle and recent 5 SNR measure-
ments as input features and predicts next 5-second SNR
values. Learning rate is set to 0.001. We select 80% of the
network data as the training set, and the left 20% as the
testing set.

Benchmarks: We use the following four benchmarks to
evaluate our MaHSI framework. In addition to the full band
baseline, we also select three representative ground-based
band selection algorithms under different categories. We
fixed the number of selected bands of the 3 traditional band
selection algorithms as the same as the average number of
bands selected by MaHSI.

1) FullBand: We transmit all bands for every captured
HSI. This is the default operating mode of tradi-
tional hyperspectral imaging satellites.

2) ISSC:ISSC [17] is a traditional clustering-based band
selection method. It applies spectral clustering on
HSI and selects the cluster centers as the selected
bands.

3) EGCSR-Ranking (EGCSR): EGCSR [23] is a tra-
ditional ranking-based band selection method. It
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Fig. 7: Energy and time cost comparison of different results.

incorporates graph convolution into the self-
representation model for band selection and selects
the top k bands according to the defined ranking
score.

4) OPBS: OPBS [18] is a traditional searching-based
band selection method. It combines the maximum
ellipsoid volume and sequential forward search for
band selection.

5.2 Evaluation Results

Overall utility comparison Fig. 5(a) and Fig. 5(b) present
the average normalized sum of HSI utility and the CDF
of HSI utility. The sum of utility calculates the achieved
utility of all HSIs throughout an entire contact window.
As shown in Fig. 5(a), our MaHSI outperforms all other 4
methods with the highest HSI utility. Specifically, MaHSI
achieves 2.87, 2.73, 1.20, and 1.50 times higher utility than
that of FullBand, ISSC, EGCSR, and OPBS, respectively. In
addition, Fig. 5(b) shows that nearly 60% of the processed
HSIs achieve higher HSI utility, over 70, with MaHSI. In
contrast, only 20% of the HSIs achieve this value in full
band strategy. The best-performed classical band selection
algorithm, EGCSR, still has 7% fewer HSIs with utility over
70 compared to MaHSI. Recall that our utility definition con-
tains two negative terms for time and energy consumption.
Thus, some HSIs with low classification scores might result
in negative utility as shown in Fig. 5(b). Note again that,
all the classical band selection algorithms already use the
average band size summarized from the MaHSI’s learned
policy as their band selection sizes. In practice, identifying
the appropriate band size requires tremendous hand-tuning
efforts or domain knowledge.

Classification performance We next decompose the
overall utility into three considered components to examine
the performance of our approach. We first compare the
classification performance between MaHSI and four other
methods. From Fig. 6(a) we can see that MaHSI outperforms
FullBand, ISSC, EGCSR, and OPBS by 24%, 35%, 7%, and
17% in overall accuracy, respectively. In addition, as shown
in Fig. 6(b), 30% HSIs processed by MaHSI achieve nearly
100% overall accuracy. In contrast, only 9%, 5%, 23%, and
10% of the HSIs have 100% overall accuracy in FullBand,
ISSC, EGCSR, and OPBS, respectively. With an adaptive
band selection strategy and content awareness, MaHSI can
find the optimal band selection for HSI while traditional
methods fail with a fixed band number. Note that the
other three band selection methods perform much worse
compared to the results reported in their papers. Because
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Fig. 8: Learning curve of MaHSI with different number of
agents.

their classification results come from the classifier trained on
samples of selected bands and then tested on the remaining
samples. We get the classification result by simply feeding
all the samples into a pre-trained classifier. We argue that
our evaluation strategy is more practical for real-world
scenarios since we have no labeled training data for newly
collected HSIs.

Time and network cost We next examine the average
total time cost and the average energy cost of processing
one HSI in Fig. 7. Total time cost measures the sum of
transmission time and the computation time as we modeled
before. In Fig. 7(a) we can see that MaHSI has the lowest
average time cost for each HSI. From the CDF plot of
time cost in Fig. 7(b), we find that the time cost of the
FullBand strategy varies widely in the range of [4.2,7].
As a comparison, our MaHSI can keep the transmission
time within a smaller range in [3,4.5] no matter how the
network condition changes. In addition, though we set the
average band size of 3 traditional band selection methods
the same as MaHSI, MaHSI still achieves less time cost for
100% HSIs than those methods. Because these fixed methods
still try to transmit the same number of bands when the
network condition is bad. It shows that our MaHSI can
adjust its band selection strategy according to the network
situation. This capability helps the satellite better utilize the
contact window with good network conditions and avoid
packet loss when bandwidth is limited. Similar results can
be discovered in the energy cost plot in Fig. 7(c) and Fig.
7(d) because the energy cost is also related to network
conditions. In general, MaHSI reduces energy cost by 8%
compared to the classical fixed band approaches, and by
36% compared to the full band strategy. In the CDF of
energy cost, 90% HSIs processed by MaHSI consume less
than 75 energy. While only 80% and 0% of the HSIs pro-
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cessed by 3 traditional methods and FullBand consume less
than 75 energy, respectively. Since the capacitor on satellites
has limited capacity, sudden high energy consumption may
run out of the stored energy and make the satellite fail
to maintain communication with the ground station. Our
MaHSI can well handle this situation because it performs
band selection based on current network conditions and
remaining energy.

Sensitivity analysis of agent numbers We then investi-
gate the influence of agents” number on MaHSI. Fig. 8 shows
the training process of MaHSI with different number of
agents from 20 to 100. As the number of agents increases, the
convergence speed, and episode reward improve gradually
since the action space reduces with more agents involved. It
becomes easier for each agent to learn the global optimal
strategy. The fluctuating performance of MaHSI with 20
agents after fixed training steps demonstrates the difficulty
in learning the optimal policy in a large action space of
20 x 219, The achieved reward improves by 55% when we
increase the agent size from 30 to 40. However, a large
action space may prohibit MaHSI with 30 and 40 agents to
learn a global optimal policy, compared to the performance
of MaHSI-50. On the other hand, we can also notice the
diminishing return for introducing more agents. MaHSI
with 50 agents and 100 agents almost ends with the same
final performance. A possible explanation is that the benefit
of reducing the action space is neutralized by the spectral
information loss for each agent brought by introducing more
agents. In addition, another shortcoming of involving more
agents is that it takes more space to store the models on
resource-constrained nanosatellites.

Terrestrial-satellite network prediction results We now
analyze the effectiveness of the LSTM-based network pre-
diction model. We compute the prediction error for three
satellites with different network characteristics as their
snapshots also being indicated in Fig. 2(b). Fig. 9 shows
the average mean squared error (MSE) for both the training
set and testing set. The average MSE is below 0.052 for all
three satellites. The better performance in TERRA can be
boiled down to two reasons. First, it results from the low
variance of the bit rate for Terra and relatively stable trend
compared to the other two satellites, which can also be seen
in Fig. 2(b). Second, it is due to environmental characteristics
(obstacles, reflections) of the setup. For instance, JPSS and
NPP have antennas closer to solar panels, which makes it
harder to predict the link quality [10]. These render the
prediction easier and more accurate. These results, along
with the previously demonstrated performance in accuracy
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Fig. 10: Average inference time of MaHSI on Jetson TX2 with
different number of agents.

and other factors indicate that the LSTM-based network
prediction model can serve our purpose well. More ad-
vanced data-driven network prediction can also be designed
and applied in our general framework, which is not the
focus of this work. When this module is incorporated into
our framework, we select the minimum of the next five-
second predicted SNR as the next-second SNR to avoid
over-estimation of the SNR.

Inference Time Measurement We measure the inference
time of MaHSI with the different number of agents on Jetson
TX2. Fig. 10 shows our results. The dashed line represents
the inference time of EGCSR, which is the fastest among
all three band selection methods in our benchmarks. As we
can see, MaHSI with 50 agents, which performs the best
in our experiment, takes only about 100ms to process an
HSI with 200 bands, faster than all other three benchmarks.
The main reason is that our MaHSI can take advantage
of the GPU on Jetson TX2 while the other three methods
can only use CPU for inference. In addition, methods like
clustering-based ISCC and searching-based OPBS take mul-
tiple iterations/steps to find the solution. In addition to the
real execution time, we also record the actual storage size
of our model. MaHSI with agent numbers 20, 40, 50, and
100 only occupies 27.7, 14.6, 17.4, and 33.7 MB, respectively.
Thus, our MaHSI is light-weighted enough to run onboard
for real-time HSI processing.

6 CONCLUSION

In this paper, we present the first work for two-tier hyper-
spectral image processing using satellite edge computing
and terrestrial-satellite collaboration. We first reveal the
non-trivial relationship between the band selection deci-
sions and the eventual classification performance. Our data
analysis also validates that satellite-terrestrial communi-
cation is intermittent and fluctuating in data bandwidth.
We present the two-tier collaborative hyperspectral image
processing framework and formulate the core in-orbit band
selection problem as a utility maximization problem. Given
the NP-Completeness of our problem and the dynamics of
the satellite environment, we present a novel multi-agent
reinforcement learning-based approach for adaptive band
selection. Our approach judiciously embeds the correla-
tion among neighboring wavelengths by allowing multiple
agents to take charge of the individual band subset. It
successfully makes adaptive decisions with the observation
of the HSI content feature, downlink network condition, and



the remaining energy of the satellite. Experiments on real-
world communication and HSI datasets demonstrate that
our method outperforms both the full-band strategy and the
traditional SOTA band selection methods.
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APPENDIX A
PROOF OF THEOREM 1

Our problem (2 tries to find a band subset for each HSI in a
task to achieve satisfying accuracy and reduce computation
and communication costs. Now we consider a simplified
offline scenario with only one HSI d;, the power constraint,
and binary variable in considered. We further make the
following assumption: The selection of a band increases A,
by a fixed number but may vary among different bands. We
have the following simplified problem for each HSI image
d;.

max Q = A; (22)
st. Bl +FElyym<C (23)
Tim € {O, 1} (24)

Our simplified version Y’ is a 0-1 Knapsack Problem where
each band is an "item" with fixed data size as "weight"
and classification improvement as "value". The Knapsack
problem has been proved to be NP-complete by reducing it
to the sub-set sum problem in polynomial time. Since ' is a
simplified version of 2, we can also prove that our original
problem is NP-complete.

APPENDIX B
COMPLETE BAND-ACCURACY RESULTS IN INDIAN
PINES AND OTHER DATASETS

In this part, we provide the complete band-accuracy results
of all 16 classes in Indian Pines and the other three datasets
to supplement the data used in Section II. It can be seen that
our observations in Section II still hold. The sequence of the
presented class results here follows the class sequence used
in the original dataset. A basic description of these datasets
can be found in Table 2.
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Fig. 14: Relationship between the number of selected bands
and the accuracy of 16 classes in Salinas Scene
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