
A General Design Pattern for Programs of Scene Graph
and its Application in a Simulation Instance

Youyi Bi1, Carlos Domínguez2, and Houcine Hassan2

1School of Mechanical Engineering and Automation, Beihang University, Beijing, P. R. China
2School of Design Engineering, Polytechnic University of Valencia, Valencia, Spain

Abstract - The prevalence and significance of programs of
Scene Graph, which mainly concern with the simulations of
3D scenes (hereinafter referred to as graphic programs), are
more and more noticeable in many realms, such as Virtual
Reality and physical simulators. This paper presents a general
design pattern, Data-Processing-Interaction (DPI), for such
programs’ development. This pattern explicitly divides the
development into several necessary structures, functions and
corresponding solutions, which accelerates the programming
process as well as provides clear application architecture.
Developers can attain rich alternatives of solutions and
concise decision-making process under the DPI pattern. And
an instance of a simulation of motion in 3D scene will be
followed. This instance clearly demonstrates the convenient
features of this pattern for the preliminary preparation, the
lower cost and high-efficiency of the development process.

Keywords: Scene Graph, Design Pattern, Virtual Reality

1 Introduction
 One of the most impressive achievements brought by
the information technology is that scientists and engineers are
able to implement their experiments and designs in computer.
Especially following the rapid development of Computer
Graphics and high-efficiency graphic chips, people are
attempting to simulate all kinds of processes in computer,
including computer aided design, robot motion, virtual
manufacturing and assembling, visualization in scientific
computing, 3D geological information system, medical
examination and of course the most direct ones—3D games.
This tendency of the wide application mainly derives from
two aspects of simulation programs. First, the features of
immersion and interaction greatly improve the user’s
sensation and intimacy with machines, especially for the
fields of education, exposition, and entertainment. Another
important aspect reflects on the much lower cost and higher
efficiency than real physical simulation in scientific and
engineering realms. Mechanical designers can detect the fatal
flaws of their designs by executing interference and kinetic
examinations on computer avoiding being inspected as
physical entities with higher cost.

In many circumstances, a simulation program is just a
simple graphic program, for which there is no necessity to
build those complicated design documents under the normal
regulations of Software Engineering. A scene graph [1] is a
general data structure that arranges the logical and often
spatial representation of a graphical scene. It is commonly
used by vector-based graphics editing applications and
modern computer games. The most direct example of the
application of Scene Graph is virtual tour, which enables
people to visit museums or palaces on computer freely and
immersively.

Thus, the importance of graphic programs is calling for
an easy and swift design pattern for developers. The first
problem for those beginners in this filed usually is “which
step should I start from?” Some researchers have already
proposed their design patterns in the researches regarding
graphic simulation. Closely related, C. Marcu [2] put forward
a reasonable structure for his simulation program of a Fanuc
M-6iB/2HS articulated robot. This structure consists of
OpenGL Scene, Motion control thread, Mathematical models
and the Main interface, which distinguishes the program into
different functions orderly. Fu Qiang [3] also raised a MVC
(Model-View-Control) design pattern in his Software for
Quality Evaluation of Seismic Acquisition Data. Martin
Eigner [4] presented an application to investigate and
manipulate JT data, a neutral data format for products, due to
the better efficiency and convenience of managing and
communicating product information and data in enterprise
networks. In this application, the author put forward a two-
layer underlying framework, including the toolkit layer (Qt
toolkit, OSG toolkit and JT toolkit) and the application layer
(Extensible viewer).

However, none of them illustrated their design patterns
specifically. They didn’t present the details for how to
prepare and implement the development process
corresponding to their design patterns. Moreover, their design
patterns are lack in the necessary simplicity and
comprehensiveness. For example, interface between the
machine and user should include other interactions like
haptics and force feedback functions. Developers need a
more efficient and straight design pattern.

This paper firstly focuses on the concept of the DPI
design pattern in Section 2, presenting a three-layer structure
and the connections between each layer. With detailed
information regarding the tools used in graphic programs, the
DPI pattern provides developers with concise developing
principles and plentiful alternatives of solutions. Section 3
then depicts a developing instance to show the typical
application of the DPI pattern and several noticeable details
in the actual developing process, before Section 4 wraps up
by giving a conclusion and outlook in terms of future work.

2 The DPI design pattern
 The design pattern of DPI (Data-Processing-Interaction)
is able to provide developers with a more explicit
programming process. Most required functions of the
program can be allocated into the three layers of the DPI
pattern. Each layer deals with certain demands and connects
with other layers smoothly. Figure 1 illustrates the basic
structure of the DPI pattern.

Figure 1. The basic structure of the DPI pattern

2.1 The Data Layer
 Data files are the most fundamental elements to
comprise a scene graph. Normally, there are five kinds of
data files, and table 1 indicates their types and descriptions.

Table 1. Common data types in graphic programs

Data
type

Common formats Roles

Model OBJ, FLT, 3DS, DAE For rendering 3D model objects

Video AVI, MPG, RM, WMA
For rendering dynamic texture,
 and multimedia

Image BMP, GIF,JPG, PNG For rendering texture data

Font TTF, TTC, FON,PFB
For displaying of words and
multilingual support

Others WMV, MP3, PDF
For auxiliary effects and
designers’ special requirements

The most important data used for graphic programs is
model, which is mainly built by various kinds of CAD
software or by drawing functions from those graphic libraries
like OpenGL directly in some cases. One kernel problem to

be solved in the data layer is to choose reasonable modeling
software. For those projects which need high mathematical or
physical accuracy or high visual effect like 3D games, large
commercial software is indispensable. Otherwise, those free
and open-source ones are sufficient. Table 2 presents the
corresponding features of the major modeling software.
Developers should select the most suitable modeling software
according to the actual requirements and financial conditions.

Table 2. Major modeling software’s features

Name Cost Platform Applications

Autodesk
Inventor

$7,995
MS

Windows

Creating 3D digital
prototypes, visualization and
simulation of products

Pro/Engineer $4,995
MS

Windows HP-
UX, Unix

Solid modeling, assembly
modeling and drafting, finite
element analysis, and NC and
tooling functionality

Solidworks $3,995
MS

Windows
CAD of industrial products

NX(UG) $8,700
MS

Windows Mac
OS X

Computer-aided mechanical
design, manufacturing and
engineering

CATIA $15,000

MS
Windows,
IBMAIX, HP-
UX, Solaris

Industrial equipment, defense
aerospace, automotive,
consumer packaged goods

3DS Max $3,495
MS

Windows
Animation, Modeling, Visual
3D Effects

Blender Free

MS
Windows,
Solaris,
Linux, Mac
OS X

Animation, Modeling, Visual
3D Effects. It can be even
run in Pocket PC,

 Another important problem is to select appropriate file
formats for the models. And the selection should follow three
factors. Accuracy is the primary consideration. In graphic
programs, those essential information regarding the models,
including geometric dimensions, colour and light, and
textures, should be kept completely and consistently. Another
factor is portability. There is no guarantee that a model will
be used in only one application. Those neutral file formats
can bring much convenience for further development. Finally,
the compressibility of the model data should be concerned.
Once the total volume of the model data exceeds the normal
conditions of computer’s hardware, developers will be busy
with upgrading their computers. Table 3 indicates the features
of major graphic model formats.

Table 3. The features of major general 3D model formats

Format Origin Descriptions and Applications
3DS 3DS Max Open model data format of 3D studio software

AC AC3D
Stored by the text format, used in FlightGear
for scenery objects and aircraft models

DAE COLLADA
A general open 3D model data exchange
standard, using XML syntax, supported by the
COLLADA library

DXF AutoCAD
Drawing Exchange Format is developed for
enabling data interoperability between
AutoCAD and other programs.

IGES
Graphic

standards
Widely-used format, composed of 80-character
ASCII records

OBJ Wavefront
Open and universally accepted. Including the
position of each vertex, the UV position of each
texture coordinate vertex, normal.

STL
Stereo-
lithography
CAD

Describing raw triangulated surface by the unit
normal and vertices of the triangle, widely used
for rapid prototyping and computer-aided
manufacturing.

To sum up, choosing a suitable modeling software and
file format suggests a well beginning of the development.

2.2 The Processing Layer
 The processing layer manages the model data and
communicates with the Interaction layer. The main functions
of this layer can be classified into three aspects—data
structure, visualization and specific algorithms. Figure 2
shows the structure of the Processing layer.

Figure 2. The structure of the Processing layer

Obviously, the primary task for the Processing layer is to
organize the model data from the former layer. A well
organized data structure benefits both the programmers and
model builders. Actually, a scene graph is a collection of
nodes in a graph or tree structure. A node may have many
children but often only a single parent, with the effect of a
parent applied to all its child nodes; an operation performed
on a group automatically propagates its effect to all of its
members. A common feature, for instance, is the ability to
group related objects into a compound object that can then be
moved, transformed, selected, as easily as a single object.

Furthermore, some software development kits (SDK)
even encapsulate the tree structure functions into their own
classes, like the OpenSceneGraph (OSG). In OSG [5],
graphic model data can be managed as a leaf node, which is
the most basic unit. Larger scene or more sophisticated
models can comprise these basic nodes and they can be
organized by superior nodes or so-called groups and so on. In
this case, those algorithms from data structure, familiar to
developers, like the depth-first traversal algorithm, can be
applied directly.

Visualization is the central function of the Processing
layer. Normally, 2D graphics can be drew and displayed
straightly by the interior drawing classes of the programming

language, such as the CDC class in Microsoft Foundation
Class (MFC) and the java.awt.Graphics2D class in Java. For
3D graphics, OpenGL and DirectX are the most fundamental
tools, which can create almost all kinds of graphs
theoretically. However, OpenGL [6] is a low level library that
takes lists of simple polygons and renders them as quickly as
possible. To do something more practical, the programmer
must break down the object into a series of simple OpenGL
instructions and send them into the engine for rendering. For
simple programs a tremendous amount of programming has
to be done just to get started. Hence those Three-dimensional
rendering engines based on such industrial standards are more
popular for their integration of many common functions. An
evident example is reading 3D models in graphic programs. It
would be more strenuous if using OpenGL functions. Table 4
presents the characteristics of major graphics rending engines
(Running platforms are inside the brackets).

Table 4. The characteristics of major graphics rendering engines

Rendering
engine

Description and Application

Open Inventor
(MS Windows,

Linux, Unix)

A C++ object-oriented retained mode 3D
graphics API designed by SGI to provide a higher
layer of programming for OpenGL

Unreal
(MS Windows,

Linux, Mac OS
Xbox, PS2 , PS3)

The most famous commercial 3D game
engine, designed by Epic Games, based on C++

OpenSG
(MS Windows,

Linux，Solaris,
Mac OS X)

A scene graph system to create real-time
graphics programs, Open Source, and can be used
freely, based on OpenGL, Well performed in
clustering support and advanced multithreading.

OERG 3D
(MS Windows,

Linux，Solaris,
Mac OS X)

A scene-oriented, flexible 3D rendering
engine, supported by OpenGL or DirectX,
realizing the scene octree, BSP tree, CLOD and
paging mechanism

OpenSceneGraph
(MS Windows

UNIX/Linux,
Mac OS X, Solaris)

An open source 3D graphics API, written in
standard C++ using OpenGL, used in fields such
as visual simulation, computer games, virtual
reality, scientific visualization and modelling.

Additionally, specific algorithms are necessary for
engineering requirements and better realistic sense. Collision
detection [7] algorithm is a widely-applied example. Collision
detection typically refers to the computational problem of
detecting the intersection of two or more objects, which is
indispensable in the simulation of robots, first-player shooter
games and other physical simulations.

2.3 The Interaction Layer
 The central function for the Interaction layer is to
respond all kinds of commands and signals from users and
transmit them to the Processing layer. The Interaction layer
normally consists of the Graphic User Interface (GUI) and
functions dealing with other physical reactions, including the
digital gloves, the haptics and force feedback devices or
sensors if necessary. The separation of the Processing layer
and the Interaction layer reflects the idea of encapsulation and
modularity in the Object-Oriented design. Such separation

brings better maintainability, i.e. the Processing layer can
avoid modification even the GUI needs to change.

Traditional interactive devices are mainly the keyboard
and mouse, while other more realistic equipments are being
introduced fast. The flight simulator to help training pilots is
the pioneer one. Pilots are able to grasp basic controlling
skills by operating joysticks while watching the virtual flight
scene. Such simulation systems have made great success in
the 3D game markets, no matter people wish to shoot, drive,
or even play tennis in the virtual world.

The mainstream interfaces are optional abundantly, free
or commercial, cross-platform or exclusive. As the great
tendency of portable smart terminals (smart phone, tablet PC,
etc…) and embedded devices, free and cross-platform
developing environment will be more suitable for small-scale
projects for lower cost and better portability.

2.4 The connections between each Layer
 The connections between each layer in the micro level
are reflected in the interfaces of functions. These interfaces
play the same roles as those transfer stations and conveyors in
factories, which help with visualizing 3D scenes and
responding to users’ instructions. Specifically, the
connections between the Data layer and the Processing layer
mainly deal with the input and output of data, i.e. reading and
writing data files.

Large projects usually require data of numerous types,
which is a big challenge for low-level graphic libraries.
Fortunately, customized plugin technology has been applied
widely in high-level graphic rendering engines. For example
in OSG, it defines a file format extension mechanism that
allows users to write their own specific data import and
export plug-ins. Once a file format plugin is completed,
people can spread it freely between different developers and
use it directly, without having to recompile the source code of
engineering systems. This mechanism greatly improves the
universality of graphic programs.

The connection between the Processing layer and the
Interaction layer is a typical trigger-respond relation. The
most common examples are the “message-response”
mechanism in MFC, the “event-listener” mechanism in Java
and the “signal-slot” mechanism in Qt, which are similar
theoretically. Figure 3 presents the connections between each
layer in the details.

Figure 3. The connections between each layer

3 A developing instance
This instance comes from a project of Polytechnic

University of Valencia: “the simulation of physical worlds to
test software control agents”. The actual developing of a
simulation program makes the DPI pattern more convincing.
The specific developing steps will be presented in this section.

3.1 Primary requirements

The main goal of this instance is to realize roaming in
virtual scene. User can finally ramble in the virtual
environment of a University teaching building. Through the
keyboard, user can choose four directions (forward, backward,
left and right) to move, rotate right or left, and make the view
go up and down.

Since this project serves for the university research,
another important property of this project is low cost, which
means to avoid using commercial software for modeling and
programming as much as possible. At the same time, because
of this project being the initial part of a simulation of robot
control and motion and the restrictions of computer
conditions, the demand for the geometric accuracy and visual
effect of scenes is moderate.

3.2 The pre-programming work

Following the above primary requirements, to determine
the related work of each layer is the first step. According to
the DPI pattern, the whole project is divided into several key
problems in each layer. Table 5 shows the preliminary
decomposition of this task. There is no necessity to make the
items of this table specifically at first, for the solutions of
each layer may interplay to some extent. And developers
don’t have to rush for starting modeling and programming
immediately unless having made suitable decisions about the
model format and render engine. Thus, work①③⑤ should
be completed firstly in general cases.

Table 5. The decomposition of this task

①To choose the modeling software and file
format The Data Layer
②To model objects
③To choose the graphic rendering engine

The Processing Layer
④To program
⑤To design graphic user interface

The Interaction Layer
⑥To program and test

Actually, the most common software for modeling
buildings is 3DS Max. It's frequently used by video game
developers, TV commercial studios, architectural
visualization studios, movie effects and movie pre-
visualization. The strong modeling function, fluent and high-
performance of visual effect and the system of rich plug-ins
contribute to its wide application around the world. But it

seems to cost unnecessarily to use commercial software
according to the actual situations of this project. Therefore,
Blender, a free and open source one is adopted.

Blender can be used for modeling, UV unwrapping,
texturing, rigging, water and smoke simulations, skinning,
animating, rendering, particle and other simulations, non-
linear editing, compositing, and creating interactive 3D
applications, including video games, animated film, or visual
effects. The most amazing point of Blender is its incredibly
small volume, for the application package of Blender 2.49 is
only less than 32MB after installed. Its feature of cross
platform even enables designers to do 3D design on mobile
phones. Furthermore, Blender also provides various plug-ins
for the import or export of special model file formats. These
impressive features make Blender suitable modeling software
for this project. Figure 4 shows the modeling process in
Blender.

Figure 4. The modeling process in Blender

In the modeling process, especially for those large-scale
projects, it is important to unify the plan and management of
objects to be modeled before the formal formation. Designers
should make clear of the significant properties of objects and
even using the ideas of standardization and Group
Technology. Usually the mechanical products could be
classified into three kinds: special parts, similar parts and
standard parts, and their respective proportion of the total
parts is 10%, 70% and 20% approximately. Therefore, parts
with similar geometric or other physical properties occupy the
main aspects in the mechanical industry. Similarly, in this
modeling process, similar objects can be built jointly to
achieve high efficiency. In this project, the objects to be built
are mainly the stuff in a teaching building, like offices, tables,
benches, chairs, decorates and persons. Static objects, such as
an office and inside facilities could be jointed as one node
manipulated in scene graph.

And in selecting the file format for the model, the STL
format was considered firstly for its feature of lightweight.
STL is developed by 3D System Company and is known as
the standard format for the description of parts in the Rapid

Prototype field. In STL, geometric information is stored as
the coordinates of the three vertexes of the triangle facet and
its normal vector. An obvious advantage of the STL is the
relatively low amount of data when storing models. However,
when confronting the selection of the graphic rendering
engine, the STL format was abandoned for its defect in the
integration of color and texture information. Hence the
selection of file formats and graphic engine is interplayed and
it is reasonable to consider the characteristics of the rendering
engine and the format of models comprehensively.

In the selection of graphic engines, OpenGL was the
first consideration for its affluent development references on
Internet and its wide application. However, the complexity of
reading 3D model files and controlling view cameras leads to
another option--- OSG, which is free and open source and
very suitable for small-scale projects. As of 2006, the OSG-
user mailing list exceeded 1,500 subscribers. OSG [8] is a
high-level programming interface for 3D computer graphics,
used in simulation, animation and visualization applications.
It’s built on OpenGL, which ensures that OSG is both cross
platform and high performance. But it goes beyond OpenGL
to provide functionality common to many 3D applications,
such as 2D and 3D file loaders, texture mapped font support,
level of detail control, threaded database paging and others.
OSG has become widely accepted by both academia and
industry for its rich feature set and liberal open source license.

3.3 The application design and result
After the decision of rendering engine, the design of

interface and application architecture can be started. Figure 5
shows the main classes in this program. Among these classes,
the Core_OSG class is responsible for calling the read/write
mechanism of OSG library to read model data. The
View_control class is in charge of calling the view control
functions from OSG library. The Application class is served
as the basic structure of this application. The interface deals
with user’s commands and the Dialog class provides users
with extra control parameters.

Figure 5. The main classes in the program.

Fortunately, Blender offers a special plug-in for OSG,
which can export the Blender model file as the OSG format.
As mentioned above, since the OSG encapsulates many
advanced functions, like reading model files and controlling
cameras directly, the programming process is simplified

greatly. Figure 6 is part of essential codes for controlling
camera views of scene graph.

Figure 6. Essential codes for controlling camera views.

And the developing environment was chose as Qt finally.
The most distinguished advantages of Qt are the portability,
compatibility and flexibility. Using the Qt programming
environment we can obtain a portable simulation program
running in different operating systems, and even in the
embedded devices. Qt framework is used for GUI, providing
with all the functionality needed to develop advanced GUI
applications on desktop and embedded platforms.
Additionally, since Qt is a C++ based environment, a number
of C++ libraries can be included for better development, such
as OSG, which provides more advanced functions of
rendering and view control based on OpenGL. After the
decision of the three-layer‘s design, modeling and coding can
start. Figure 7 shows the effect of main interface. The scene
graph is presented in the view area. In the menu bar, user
could read different files of scene graph to be simulated from
the “File” menu. In the “Simulate” menu, user could enter
related parameters to control the quantity and location of
specific objects in scene graph.

Figure 7. The effect of main interface

4 Conclusions
 The DPI provides developers with a simple and high-
efficiency design pattern for graphic programs. The explicit
classification of a task is the decisive point. Developers could
quickly make clear of their thoughts and choose the most
suitable solutions among those alternative options. As a
matter of fact, the heavy work on writing complete
developing document is simplified as only to solve several
kernel problems. Once they are solved, the modeling and
programming work can be executed almost simultaneously if
the human resource is adequate, which will shorten the
developing time further. The further work of DPI will be
focused on establishing more elaborate and general
connections between each layer and the possibility of auto-
programming of graphic programs.

5 Acknowledgements
This work has been partially funded by Escuela Técnica

Superior de Ingeniería del Diseño, Universidad Politécnica de
Valencia.
6 References
[1] Avi Bar-Zeev. Scene graphs: Past, Present and
Future ， http://www.realityprime.com/articles/scenegraphs-
past-present-and-future, 2007

[2] C. Marcu, Gh. Lazea, S. Herle, R. Robotin, L. Tamas.
3D Graphical Simulation of an Articulated Serial Manipulator
based on Kinematic Models. 19th International Workshop on
Robotics in Alpe-Adria-Danube Region, 2010.

[3] FU Qiang, XIAO Yunshi, YUE Jiguang. QESADSYS
V1.0: A New Cross-Platform Software for Quality Evaluation
of Seismic Acquisition Data. World Congress on Software
Engineering, 2009.

[4] Martin Eigner, Florian Gerhardt. Extensible JT Open
Tool for Prototypical Process Support, based on
OpenSceneGraph and QT. 13th International Conference on
Computer Supported Cooperative Work in Design, 2009.

[5] Paul Martz. OpenSceneGraph Quick Start guide http://w
ww.openscenegraph.org/osgwiki/pmwiki.php/ Documentatio
n/ QuickStartGuide

[6] Dave Shreiner. OpenGL programming guide, Addison-
Wesley Publishing Company, 2009.

[7] Yang Shixing, Cao Mingliang. Step into OpenSceneGra
ph. Virtual Reality Lab of Zhengzhou University, 2008.

[8] Wang Rui, Qian Xuelei. The design and practice of
OSG rendering engine, Tsinghua University Press, 2009.

	1 Introduction
	2 The DPI design pattern
	2.1 The Data Layer
	2.2 The Processing Layer
	2.3 The Interaction Layer
	2.4 The connections between each Layer
	3 A developing instance
	3.3 The application design and result

	4 Conclusions
	5 Acknowledgements
	6 References

