
AN INTEGRATED TASK AND PATH PLANNING APPROACH FOR MOBILE ROBOTS IN
SMART FACTORY

Shuo Liu1,2 Bohan Feng1 Dan Yu2 Youyi Bi1*

1 University of Michigan – Shanghai Jiao Tong
University Joint Institute

Shanghai Jiao Tong University
Shanghai, China

2 College of Astronautics
Nanjing University of Aeronautics and

Astronautics
Nanjing, China

ABSTRACT
Mobile robots are being widely used in smart manufacturing,

and efficient task assignment and path planning for these robots

is an area of high interest. In previous studies, task assignment

and path planning are usually solved as separate problems,

which can result in optimal solutions in their respective fields,

but not necessarily optimal as an integrated problem.

Meanwhile, precedence constraints exist between sequential

processing operations and material delivery tasks in the

manufacturing environment. Thus, those planning methods

developed for warehousing and logistics may not simply apply to

the environment of smart factories. In this paper, we propose an

integrated task and path planning approach based on Looking-

backward Search Strategy (LSS) and Regret-based Search

Strategy (RSS). In the stage of task assignment, the real paths for

mobile robots are identified based on the Cooperative A* (CA*)

algorithm and the time and energy consumed by mobile robots

and machining centers are calculated. Then a greedy strategy

working with LSS or RSS is used to search reasonable task

assignments in time-series, which can generate a joint optimal

solution for both task assignment and path planning. We verify

the validity of the proposed approach in a simulated smart

factory and the results show that our approach can improve the

operation efficiency of the smart factory and save the time and

energy consumption effectively.

Keywords: Task assignment, Path planning, Integrated

planning, Energy consumption, Mobile robot

* Corresponding author, Assistant Professor in Mechanical Engineering, Shanghai Jiao Tong University

Email: youyi.bi@sjtu.edu.cn

NOMENCLATURE

𝑇 = {1, … , 𝑛} a set of 𝑛 tasks

𝑡𝑦𝑝𝑒𝑖 the type of task 𝑖 ∈ 𝑇

𝑠𝑝𝑖 the starting position of task 𝑖 ∈ 𝑇

𝑔𝑝𝑖 the goal position of task 𝑖 ∈ 𝑇

𝑠𝑡𝑖 the starting time of task 𝑖 ∈ 𝑇

𝑔𝑡𝑖 the finishing time of task 𝑖 ∈ 𝑇

𝑝𝑎𝑟𝑒𝑛𝑡𝑖 the parent task of task 𝑖 ∈ 𝑇

𝑀𝑖 = {1, … , 𝑚}
a set of 𝑚 optional machining centers

for task 𝑖 ∈ 𝑇

𝑅 = {1, … , 𝑎} a set of 𝑎 robots

𝑠𝑗 the starting position of robot 𝑗 ∈ 𝑅

𝑃 = {𝑠𝑝1, ⋯ , 𝑠𝑝𝑛 ,
𝑔𝑝1, ⋯ , 𝑔𝑝𝑛}

all possible positions that robot 𝑗 can

arrive at

𝑇𝐴𝑗𝑝: 𝑅 × 𝑃
the task assignment mapping table to

describe whether robot 𝑗 need to arrive

at position 𝑝 or not

𝑀𝑇𝑘𝑡: 𝑀 × 𝑇𝑖𝑚𝑒
the processing mapping table to describe

whether machining center 𝑘 is

processing task 𝑖 at time 𝑡 or not

𝑐𝑗
𝑡 the number of loading tasks of robot 𝑗

at time 𝑡

𝑙𝑜𝑐𝑗(𝑡) the location of robot 𝑗 at time 𝑡

𝑡𝑗
the time spent by robot 𝑗 to transport all

tasks assigned to it

Proceedings of the ASME 2022
International Mechanical Engineering Congress and Exposition

IMECE2022
October 30-November 3, 2022, Columbus, Ohio

IMECE2022-95364

1 Copyright © 2022 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/IM

EC
E/proceedings-pdf/IM

EC
E2022/86649/V02BT02A058/6980556/v02bt02a058-im

ece2022-95364.pdf by Shanghai Jiaotong U
niversity user on 24 February 2023

https://crossmark.crossref.org/dialog/?doi=10.1115/IMECE2022-95364&domain=pdf&date_stamp=2023-02-08

𝑡𝑘

the time spent and energy consumed by

machining center 𝑘 after completing

all tasks assigned to it

𝑒𝑘

the energy consumed by machining

center 𝑘 after completing all tasks

assigned to it

𝑙 (𝑙 ≥ 1) the 𝑙th layer of the task queue

𝑃𝑃 the maximum transportation time

𝑃𝑇 the maximum processing time

𝑃𝐸 the total processing energy

𝑡𝑗
𝑖

the time when robot 𝑗 finishes

transporting task 𝑖

𝑡𝑐𝑢𝑟_𝑚𝑎𝑥
the total time consumed by machining

center 𝑘 to complete the last task that

has been assigned up to now

∆𝑡𝑖 the search space of inserting task 𝑖 ∈ 𝑇

𝑇𝐶 total time and energy consumption

1. INTRODUCTION
A smart factory usually owns a series of machining centers,

industrial robots, storage racks and mobile robots. The mobile

robots can assist industrial robots and machining centers with

complex manufacturing jobs by delivering raw materials and

parts, and inspecting the status of the production lines [1]. As the

number of robots and tasks grows, the scheduling and planning

of these robots can be complicated. Therefore, it is necessary to

investigate how to efficiently assign and schedule the mobile

robots to transport the materials between machining centers and

storage racks with the goal of minimizing the makespan (i.e., the

time consumed in transportation and processing) and/or the

amount of consumed energy. Moreover, the constraints of

temporal precedence may exist between sequential

manufacturing processes and material delivery operations (e.g.,

picking up, delivering, processing, and storing). Thus, we define

this problem as the precedence constrained multi-agent task

assignment and path-finding (PC-TAPF) problem [2].

In a PC-TAPF problem, a set of tasks and a team of mobile

robots are usually given. We first need to assign each task to a

suitable robot [3]. Then we need to find a set of conflict-free

paths for robots to ensure that the assigned tasks can be

successfully completed [4]. Note that precedence constraints can

exist between tasks in a PC-TAPF problem. For example, both

task A and task B must be completed before task C is started, and

the initial position of task C can only be determined once the

target positions of task A and task B have been determined in the

scenario of flowline manufacturing [2]. Therefore, it is not

appropriate to simply apply the task assignment and path

planning algorithms developed for warehousing and logistics

into smart factories considering the precedence constraints of

transportation tasks are different in these environments.

Various approaches have been developed to solve PC-TAPF

problems [5–8]. These approaches often resort to solve the task

assignment and path planning separately. The common

procedure is to generate all possible assignments and then find a

feasible path for each assigned task. However, many of these

approaches either suffer from high complexity in computation

which leads to failed deployment in practice, or over simply

assume the solved paths will not conflict with each other no

matter how the tasks are assigned [9–11].

In recent years, approaches that jointly solve task assignment

and path planning are emerging. For instance, the CBM

(Conflict-Based Min-Cost-Flow) and CBS-TA (Conflict-Based

Search with Optimal Task Assignment) algorithms [12,13] can

find makespan-optimal solutions to task assignment and path

planning. Brown et al. [2] proposed a four-level hierarchical

algorithm for computing makespan-optimal solutions to PC-

TAPF problems. However, many of these algorithms are limited

by poor scalability and timeout failures can happen when the

number of agents and tasks becomes relatively large. In addition,

they usually only consider makespan as the single optimization

objective.

Other new methods have been proposed recently to solve

TAPF centrally and adopted a sequential two-stage method

which performs task assignment first then followed by path

planning in an integrated way. For instance, Chen et.al. [14]

designed an integrated method where task assignment choices

are chosen by actual delivery costs. The actual path cost is

considered when assigning tasks to agents for improving the

quality of the task assignment. However, these methods do not

consider the precedence constraints between tasks and may not

apply to the scenario of smart factories.

To make up for these shortcomings, we propose an integrated

task and path planning approach for mobile robots in smart

factory in this paper. This approach can solve task assignment

and path planning in a joint way while considering the

precedence constraints of tasks and conflict-free constraints of

paths. The core idea of the approach is the Looking-backward

Search Strategy (LSS) and Regret-based Search Strategy (RSS)

proposed in the process of task assignment, which can help with

reducing the total operating time and the consumed energy of

machining centers as much as possible. Our approach

preliminarily solves the coupling of task assignment and path

planning with improving the operational efficiency and saving

energy consumption of the smart factory. It can contribute to the

practical deployment of multi-mobile robot systems in smart

factories and promote the development of more advanced high-

efficient and energy-saving manufacturing modes.

This paper is structured as follows. Section 2 introduces our

integrated task and path planning approach. Section 3 presents a

simulation experiment validating the proposed approach and

discusses the experiment results. Section 4 provides a summary

of our work and suggests the future research directions.

2. METHODS

2.1 Problem Formulation
The PC-TAPF problem in a smart factory environment is

defined as how to optimally assign tasks with precedence

constraints and generate conflict-free paths for each moving

robot. In our study, the environment is represented as a grid map

consisting of cells with unit length, and an index incrementally

numbered from left to right and top to down is used as the

2 Copyright © 2022 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/IM

EC
E/proceedings-pdf/IM

EC
E2022/86649/V02BT02A058/6980556/v02bt02a058-im

ece2022-95364.pdf by Shanghai Jiaotong U
niversity user on 24 February 2023

position coordinate of each cell. For example, in a 5 × 10 cells

grid, the upper left corner cell is indexed with 1, while the lower

right corner one is with 50. Thus, in the path finding, graph-based

search methods such as CA* [15] can be adopted.

We use 𝑇 = {1, … , 𝑛} to represent a set of tasks in the smart

factory in which the cargo (e.g., materials or parts) are

transported from starting positions to designated positions. Each

task 𝑖 ∈ 𝑇 has a given tuple with seven attributes, (𝑡𝑦𝑝𝑒𝑖 , 𝑠𝑝𝑖 ,
𝑔𝑝𝑖 , 𝑠𝑡𝑖 , 𝑔𝑡𝑖, 𝑝𝑎𝑟𝑒𝑛𝑡𝑖 , 𝑀𝑖). 𝑡𝑦𝑝𝑒𝑖 is the type of task 𝑖, and

𝑡𝑦𝑝𝑒𝑖 = 0 represents that in task 𝑖 the cargo will be

transported from a storage zone or machining center to another

machining center, while 𝑡𝑦𝑝𝑒𝑖 = 1 represents that the cargo

will be transported from a machining center to a storage zone.

𝑠𝑝𝑖 and 𝑔𝑝𝑖 are the starting and goal positions of task 𝑖 ,
respectively, which equals −1 when the starting or goal

position is unknown. 𝑠𝑡𝑖 and 𝑔𝑡𝑖 are the starting and finishing

time of task 𝑖, respectively, which equals −1 when either one

is unknown. 𝑝𝑎𝑟𝑒𝑛𝑡𝑖 is the parent task of task 𝑖, and it must be

completed before starting task 𝑖 . 𝑀𝑖 = {1, … , 𝑚} is a set of

optional machining centers for task 𝑖 when operating task 𝑖 .
𝑅 = {1, … , 𝑎} represents the set of robots for transporting tasks.

𝑠𝑗 denotes the starting position for each robot 𝑗 ∈ 𝑅 . The

starting positions of all robots are randomly assigned in the

docking zone at the beginning. In this study, the robots are

assumed to be able to turn around in place, thus robot heading is

not considered in task assignment.

In order to transport task 𝑖, robot 𝑗 should first move to the

starting position 𝑠𝑝𝑖 of the task 𝑖 and then transport the cargo

to the goal position 𝑔𝑝𝑖 . During this period, time is set to be

discretized into unit time steps, and a robot can move over one

cell in one time step. In the path finding process, two types of

collisions need to be avoided: vertex collision and edge collision.

The former refers to that two robots should not occupy the same

cell at the same time, and the latter means that two robots should

not move along adjacent cells in opposite directions at the same

time.

Let 𝑃 = {𝑠𝑝1, ⋯ , 𝑠𝑝𝑛 , 𝑔𝑝1 , ⋯ , 𝑔𝑝𝑛} be all possible positions

that robot 𝑗 can arrive at. 𝑇𝐴𝑗𝑝: 𝑅 × 𝑃 → {0,0.5}, 𝑗 ∈ 𝑅, 𝑝 ∈ 𝑃

represents the task assignment mapping table that maps the

indices of robot 𝑗 and the loading or unloading position 𝑝 to a

fixed value, which equals 0.5 if and only if robot 𝑗 ∈ 𝑅 has to

reach the position 𝑝 ∈ 𝑃. 𝑇𝐴𝑗𝑠𝑝𝑖
+ 𝑇𝐴𝑗𝑔𝑝𝑖

= 1 means that task

𝑖 is assigned to robot 𝑗. 𝑐𝑗
𝑡 denotes the number of loading tasks

of robot 𝑗 at time 𝑡. 𝑙𝑜𝑐𝑗(𝑡) denotes the location of robot 𝑗 at

time 𝑡. 𝑡𝑗 denotes the time spent by robot 𝑗 to transport all the

tasks assigned to it. 𝑡𝑘 and 𝑒𝑘 denote the time spent and

energy consumed by machining center 𝑘 after completing all

tasks assigned to it, respectively.

The problem formulation is given in Equations (1) – (14). In

Equation (1), 𝑃𝑃 is the maximum time spent by all robots

transporting all tasks, i.e., the maximum transportation time. In

Equation (2), 𝑃𝑇 is the maximum time spent by all machining

centers to process all tasks, i.e., the maximum processing time.

In Equation (3), 𝑃𝐸 is the total energy consumed when

machining centers are operating, i.e., the total processing energy.

The overall optimization goal is to simultaneously minimize

𝑃𝑃, 𝑃𝑇 and 𝑃𝐸 subject to the constraints in Equations (4) -

(14).

𝑃𝑃 = 𝑚𝑎𝑥
𝑗∈𝑅

𝑡𝑗 (1)

𝑃𝑇 = 𝑚𝑎𝑥
𝑘∈𝑀

𝑡𝑘 (2)

𝑃𝐸 = ∑ 𝑒𝑘
𝑚
𝑘=1 (3)

subject to

𝑇𝐴𝑗𝑠𝑝𝑖
+ 𝑇𝐴𝑗𝑔𝑝𝑖

∈ {0,1}, ∀𝑖 ∈ 𝑇 , ∀𝑗 ∈ 𝑅 (4)

∑ 𝑇𝐴𝑗𝑠𝑝𝑖
+𝑎

𝑗=1 𝑇𝐴𝑗𝑔𝑝𝑖
∈ {0,1}, ∀𝑖 ∈ 𝑇 (5)

𝑐𝑗
𝑡 ∈ {0,1}, ∀𝑡, ∀𝑗 ∈ 𝑅 (6)

𝑙𝑜𝑐𝑗(𝑡) ≠ 𝑙𝑜𝑐𝑗′(𝑡), ∀𝑗、𝑗′ ∈ 𝑅, 𝑗 ≠ 𝑗′, ∀𝑡 (7)

{𝑙𝑜𝑐𝑗(𝑡), 𝑙𝑜𝑐𝑗(𝑡 + 1)} ≠ {𝑙𝑜𝑐𝑗′(𝑡 + 1), 𝑙𝑜𝑐𝑗′(𝑡)}

∀𝑗、𝑗′ ∈ 𝑅, 𝑗 ≠ 𝑗′, ∀𝑡 (8)

𝑔𝑝𝑖 = −1, ∀𝑖 ∈ 𝑙𝑎𝑦𝑒𝑟1 ∩ 𝑇 𝑠. 𝑡. 𝑡𝑦𝑝𝑒𝑖 = 0 (9)

𝑔𝑝𝑖 ≥ 0, ∀𝑖 ∈ 𝑙𝑎𝑦𝑒𝑟1 ∩ 𝑇 𝑠. 𝑡. 𝑡𝑦𝑝𝑒𝑖 = 1 (10)

𝑠𝑝𝑖 ≥ 0, 𝑠𝑡𝑖 = 0, 𝑔𝑡𝑖 = −1, 𝑝𝑎𝑟𝑒𝑛𝑡𝑖 = 𝜙

∀𝑖 ∈ 𝑙𝑎𝑦𝑒𝑟𝑙 , 𝑙 = 1 (11)

𝑠𝑝𝑤 ≥ 0, 𝑠𝑝𝑤′ = −1

∃𝑤, 𝑤′ ∈ 𝑙𝑎𝑦𝑒𝑟𝑙 , 𝑙 ≥ 2, 𝑤 ∈ 𝑇, 𝑤 ≠ 𝑤′, ∀𝑡𝑦𝑝𝑒𝑝𝑎𝑟𝑒𝑛𝑡
𝑤′ = 0

(12)

𝑠𝑡𝑤 = −1, ∀𝑤 ∈ 𝑙𝑎𝑦𝑒𝑟𝑙 , 𝑙 ≥ 2, 𝑤 ∈ 𝑇 (13)

𝑝𝑎𝑟𝑒𝑛𝑡𝑤 = 𝑖, ∃𝑖 ∈ 𝑙𝑎𝑦𝑒𝑟𝑙−1, ∀𝑤 ∈ 𝑙𝑎𝑦𝑒𝑟𝑙 , 𝑙 ≥ 2, 𝑤 ∈ 𝑇 (14)

Equation (4) indicates that the loading and unloading process of

a task is done by the same robot; (5) means that a task can only

be transported by exactly one robot; (6) implies that each robot

is capable of transporting at most one task at a time, i.e., a robot

cannot transport multiple tasks simultaneously; (7) implies there

is no vertex collisions between robots; (8) implies there is no

edge collision between robots. Equations (9) – (14) describe the

constraints of certain task attributes when considering the

precedence of tasks, and the details are described below.

Figure 1 shows a task queue organized in three layers

consisting of eight tasks with precedence constraints. We use

𝑙 (𝑙 ≥ 1) to describe the 𝑙th layer of the task queue, and each

layer is a set of tasks in which tasks in the same layer do not need

to follow specific sequences, while tasks in two consecutive

layers need to be carried out one after another. For example, task

𝑡2 must be carried out after 𝑡1 is completed, while task 𝑡1 and

3 Copyright © 2022 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/IM

EC
E/proceedings-pdf/IM

EC
E2022/86649/V02BT02A058/6980556/v02bt02a058-im

ece2022-95364.pdf by Shanghai Jiaotong U
niversity user on 24 February 2023

𝑡4 can be started at the same time if their needed resources (e.g.,

robots) are available. Obviously, tasks in layer1 (base layer, 𝑙 =
1) do not own any parent tasks, while tasks in other layers (𝑙 ≥
2) should have parents.

FIGURE 1: A TASK QUEUE ORGANIZED IN THREE

LAYERS CONSISTING OF EIGHT TASKS.

Equations (9) and (10) indicate that the goal position is

unknown for task 𝑖 when 𝑡𝑦𝑝𝑒𝑖 = 0 and is known for task 𝑖
when 𝑡𝑦𝑝𝑒𝑖 = 1. Equation (11) indicates that for all tasks in the

base layer (𝑙 = 1), their starting positions should be known, their

starting time are set to 0, their finishing time are unknown

initially, which can only be calculated when these tasks are

assigned, and all tasks in the base layer are pioneers without

parent tasks.

Tasks in layer 𝑙 (𝑙 ≥ 2) need to be assigned after the

completion of their corresponding parent tasks in layer 𝑙 − 1.

This means that the attributes of tasks in layer 𝑙 are not exactly

the same as those in layer 𝑙 − 1 due to the precedence

constraints. Equation (12) describes that the starting positions of

some tasks are known, while others are unknown. In the latter

case, the starting position of the current task depends on the goal

position of its corresponding parent task. That is, the starting

position of this current task will be known only after its parent

task 𝑖 with 𝑡𝑦𝑝𝑒𝑖 = 0 is assigned. Likewise, Equation (13)

requires that task can be started only after its corresponding

parent task is completed. Equation (14) represents a task in layer

𝑙 (𝑙 ≥ 2) has one parent task when the jobs have not been

completed at the layer 𝑙 − 1.

2.2 Integrated Task and Path Planning

FIGURE 2: THE OVERALL FRAMEWORK OF INTEGRATED

TASK AND PATH PLANNING APPROACH.

Figure 2 shows the overall framework of the proposed approach.

The two thick black arrows indicate the input and output of our

approach. The blue dashed box represents the energy planning

and path planning for the selected task, from which we can get

the time consumed by a certain robot for transportation and the

time and energy consumed by a certain machining center for

processing task. The orange dashed box represents the weighted

sum of the time and energy consumption. The tasks are first

organized into a queue by layers according to their precedence

constraints as shown in Fig. 1. Then tasks are selected from the

built task queue in increasing order of precedence layers, i.e.,

tasks from base layer are extracted first. For each selected task

𝑖, energy planning is first performed by traversing all possible

machining centers that are capable of processing task 𝑖. For each

possible machining center 𝑘 , its position is set as the goal

position of task 𝑖 . The energy consumed by the machining

center 𝑘 and the machining time can be obtained from initial

settings. Then the CA* [15] is used to generate a reasonable path

for robot 𝑗 ensuring that no collision occurs with other planned

paths.

The priority order for path planning is determined by the task

assignment sequence. The time consumption and the energy

consumption for task processing and transportation are taken as

the total consumption and stored in the Assignment Heap 𝐻 in

increasing order (i.e., the assignment with least total

consumption is at the top of the heap). Assignment Heap 𝐻

contains all potential assignments of task 𝑖 to each available

robot and machining center when 𝑡𝑦𝑝𝑒𝑖 = 0 . The greedy

algorithm is then used to select the optimal task assignment from

the Assignment Heap 𝐻 and the loop cycle keeps continuing

until all tasks are successfully assigned. In order to reduce the

unnecessary waiting time for machining centers in task

assignment, we propose the Looking-backward Search Strategy

(LSS) and Regret-based Search Strategy (RSS), which are

explained in the following subsections.

2.2.1 Looking-backward Search Strategy (LSS)

Traditionally, a task will be assigned to a machining center at

the time point right after the last task assigned to this machining

center. This treatment can lead to a waste of time and energy

consumption due to unnecessary waiting time since the time

periods before the last assigned task might be free for inserting

the current task. Thus, we propose the Looking-backward Search

Strategy (LSS) to reduce the operating time. The basic idea is to

search the available time period (i.e., looking backward) before

the last assigned task and try to identify whether the current task

can fit in the identified time period.

Algorithm 1 shows the pseudo-code for updating processing

sequence via LSS. Let 𝑀𝑇𝑘𝑡: 𝑀 × 𝑇𝑖𝑚𝑒 → {0, 𝑖}, 𝑘 ∈ 𝑀, 𝑡 ∈
𝑇𝑖𝑚𝑒, 𝑖 ∈ 𝑇 represents the processing mapping table, which

equals 𝑖 if and only if the machining center 𝑘 is processing

task 𝑖 at time 𝑡. 𝑀𝑇𝑘𝑡 = 0 implies that machining center 𝑘

is idle at time 𝑡. Let 𝑡𝑗
𝑖 denote the time when robot 𝑗 finishes

transporting task 𝑖 to the machining center 𝑘 , and 𝑡𝑐𝑢𝑟_𝑚𝑎𝑥

represent the current total time consumed by machining center

4 Copyright © 2022 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/IM

EC
E/proceedings-pdf/IM

EC
E2022/86649/V02BT02A058/6980556/v02bt02a058-im

ece2022-95364.pdf by Shanghai Jiaotong U
niversity user on 24 February 2023

𝑘 to complete the last task that has been assigned up to now.

Equation (15) describes ∆𝑡𝑖, the search space of inserting task 𝑖
(i.e., the feasible time periods), when the looking-backward

search is performed.

∆𝑡𝑖 = (𝑡𝑗
𝑖, 𝑡𝑐𝑢𝑟_𝑚𝑎𝑥) (15)

Algorithm 1 Update Processing Sequence via LSS

Input: current task 𝑖, robot 𝑗, machining center 𝑘

Output: processing mapping table 𝑀𝑇𝑘𝑡

1： Initialize 𝑐𝑜𝑢𝑛𝑡 = 0

2： for all 𝑡 ∈ (𝑡𝑗
𝑖, 𝑡𝑐𝑢𝑟_𝑚𝑎𝑥) do

3： if 𝑀𝑇𝑘𝑡 == 0 then

4： 𝑐𝑜𝑢𝑛𝑡 + +

5： if 𝑐𝑜𝑢𝑛𝑡 == 𝑡𝑘
𝑖 then

6： for all 𝑡′ ∈ (𝑡, 𝑡 + 𝑡𝑘
𝑖 − 1) do

7： 𝑀𝑇𝑘𝑡′ = 𝑖

8： end for

9： end if

10： end if

11： if 𝑀𝑇𝑘𝑡! = 0 then

12： 𝑐𝑜𝑢𝑛𝑡 = 0

13： end if

14： end for

Specifically, a counter function 𝑐𝑜𝑢𝑛𝑡 is to keep track of the

time periods when the machining center 𝑘 is idle. Here the

greedy search strategy is used, which means that once we find

the first feasible time period 𝑖𝑛𝑠𝑒𝑟𝑡, the search will stop and the

identified period will be the time period for machining center 𝑘

to process task 𝑖.

FIGURE 3: AN ILLUSTRATION ABOUT THE LOOKING-

BACKWARD SEARCH STRATEGY.

Figure 3 shows an example case of updating the task

assignment based on LSS. The blue boxes represent the time

periods occupied by assigned tasks (e.g., tasks 𝑎, 𝑏 ∈ 𝑇) and

they cannot be inserted with new tasks. The orange box

represents the insertion time period using traditional selection

method, while the green box represents the first feasible insertion

time period following LSS. The search space of the insertion

time is (𝑡𝑗
𝑖, 𝑡𝑐𝑢𝑟_𝑚𝑎𝑥). Obviously, the new insertion strategy can

reduce the idle time for the machining center and the total time

and energy consumption can be saved.

2.2.2 Regret-based Search Strategy (RSS)
Note that LSS will stop searching after finding the first

feasible time period for current task 𝑖. This greedy strategy may

prevent the next task 𝑖′ from inserting backward to machining

center 𝑘 because the identified time period to process task 𝑖
may partially interfere with the time period to process next task

𝑖′ . To address this issue, we propose a Regret-based Search

Strategy (RSS). The basic idea is that when we perform the task

insertion of current task 𝑖, the algorithm leaves enough space for

inserting the next task 𝑖′, i.e., think one more step.

Algorithm 2 Update Processing Sequence via RSS

Input: current task 𝑖, next task 𝑖′, robot 𝑗,
machining center 𝑘

Output: processing mapping table 𝑀𝑇𝑘𝑡

1： Initialize 𝑖𝑛𝑠𝑒𝑟𝑡𝑠 = 𝜙

2： for all 𝑡 ∈ (𝑡𝑗
𝑖, 𝑡𝑐𝑢𝑟_𝑚𝑎𝑥) do

3：
𝑖𝑛𝑠𝑒𝑟𝑡𝑠 ←Find all feasible time periods of

task 𝑖
4： end for

5： //regret

6： 𝑖𝑛𝑠𝑒𝑟𝑡𝑠𝑟𝑒𝑔𝑟𝑒𝑡 ← Filter time periods

7： if 𝑖𝑛𝑠𝑒𝑟𝑡𝑠𝑟𝑒𝑔𝑟𝑒𝑡 = 𝜙 then

8： 𝑖𝑛𝑠𝑒𝑟𝑡𝑠𝑓𝑖𝑛𝑎𝑙 ← max(𝑖𝑛𝑠𝑒𝑟𝑡𝑠)

9： end if

10： if 𝑖𝑛𝑠𝑒𝑟𝑡𝑠𝑟𝑒𝑔𝑟𝑒𝑡! = 𝜙 then

11： 𝑖𝑛𝑠𝑒𝑟𝑡𝑠𝑓𝑖𝑛𝑎𝑙 ← min(𝑖𝑛𝑠𝑒𝑟𝑡𝑠𝑟𝑒𝑔𝑟𝑒𝑡)

12： end if

13： //insert

14：
for all 𝑡 ∈ (𝑖𝑛𝑠𝑒𝑟𝑡𝑠𝑓𝑖𝑛𝑎𝑙 , 𝑖𝑛𝑠𝑒𝑟𝑡𝑠𝑓𝑖𝑛𝑎𝑙 +

𝑡𝑘
𝑖 − 1) do

15： 𝑀𝑇𝑘𝑡 = 𝑖

16： end for

Algorithm 2 shows the pseudo-code for updating task

assignment sequence via RSS. The search space is the same as

Equation (16). The core ideas are as follows.

(1) We define an array 𝑖𝑛𝑠𝑒𝑟𝑡𝑠 = {𝑖𝑛𝑠𝑒𝑟𝑡𝑠0, 𝑖𝑛𝑠𝑒𝑟𝑡𝑠1, … }

to save all feasible time periods that allow the insertion of task

5 Copyright © 2022 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/IM

EC
E/proceedings-pdf/IM

EC
E2022/86649/V02BT02A058/6980556/v02bt02a058-im

ece2022-95364.pdf by Shanghai Jiaotong U
niversity user on 24 February 2023

𝑖. Note that the time period 𝑖𝑛𝑠𝑒𝑟𝑡 mentioned in Fig.3 is the

same as 𝑖𝑛𝑠𝑒𝑟𝑡𝑠 when the size of 𝑖𝑛𝑠𝑒𝑟𝑡𝑠 is 1.

(2) Then the insertion of the next task 𝑖′ is considered by

filtering out the time periods that allow the insertion of task 𝑖,
which can be accessed by the index 𝑟𝑒𝑔𝑟𝑒𝑡.

(3) Finally, the final time period 𝑖𝑛𝑠𝑒𝑟𝑡𝑠𝑓𝑖𝑛𝑎𝑙 of task 𝑖 is

determinized depending on which of the two cases shown in Fig.

4 applies. The details of the two cases are provided as follows.

Figures 4 (a) and 4 (b) depict the cases when the identified

time periods for insertion of task 𝑖 allow and not allow the

insertion of next task 𝑖′, respectively. The blue boxes represent

the time periods occupied by assigned tasks (e.g., tasks 𝑎, 𝑏, 𝑐 ∈
𝑇), i.e., they cannot be inserted with new tasks. The orange box

represents the time of the next task 𝑖′ processed on machining

center 𝑘, while the green boxes represent all feasible insertion

time periods following RSS. The search space of the insertion

time for current task 𝑖 and the next task 𝑖′ is (𝑡𝑗
𝑖, 𝑡𝑐𝑢𝑟_𝑚𝑎𝑥)

and (𝑡
𝑗′
𝑖′ , 𝑡𝑐𝑢𝑟_𝑚𝑎𝑥), respectively.

In Fig. 4 (a), when we find time periods that allow the insertion

of both task 𝑖 and 𝑖′ (i.e., 𝑖𝑛𝑠𝑒𝑟𝑡𝑠1 and 𝑖𝑛𝑠𝑒𝑟𝑡𝑠2), then we

let machining center 𝑘 process task 𝑖 as soon as possible to

free this machining resource (i.e., the final selected time period

for task 𝑖 is 𝑖𝑛𝑠𝑒𝑟𝑡𝑠1).

In Fig. 4 (b), obviously the time of the next task 𝑖′ needed

(i.e., the orange box) is larger than any of the identified time

periods that allow the insertion of task 𝑖 , i.e.,

{𝑖𝑛𝑠𝑒𝑟𝑡𝑠0, 𝑖𝑛𝑠𝑒𝑟𝑡𝑠1, 𝑖𝑛𝑠𝑒𝑟𝑡𝑠2}. In this case, we choose to insert

task 𝑖 as far from 𝑡𝑗
𝑖 as possible, because if the next task 𝑖′

takes a shorter transportation time, then the search space of task

𝑖′ will expand to ∆𝑡𝑖′ = (𝑡𝑗′
𝑖′

, 𝑡𝑐𝑢𝑟_𝑚𝑎𝑥) . The newly expanded

search space (i.e., the left-side dashed green box) and the original

search space 𝑖𝑛𝑠𝑒𝑟𝑡𝑠0 are likely to form as a larger space

allowing the insertion of the next task 𝑖′, which will greatly save

the time consumption.

(a) (b)

FIGURE 4: (A) A CASE WHEN THE IDENTIFIED TIME PERIODS FOR INSERTION OF TASK 𝑖 ALLOW THE INSERTION

OF NEXT TASK 𝑖 ′. (B) A CASE WHEN THE IDENTIFIED TIME PERIODS FOR INSERTION OF TASK 𝑖 DO NOT ALLOW

THE INSERTION OF NEXT TASK 𝑖 ′.

3. EXPERIMENT AND DISCUSSION

3.1 Experiment settings

Figure 5 (a) shows the sketch of a simulated smart factory

including four workshops placed with machining centers (dark

green), corridors (white), docking zones for mobile robots (light

blue), and storage zones (dark gray). Comparing to warehousing

and logistics where mobile robots undertake similar

transportation tasks, the mobile robots equipped for each

workshop in a smart factory can be different since the workshops

usually serve at different stages in the whole manufacturing

process. Thus, it is more often to see a group of robots work

within a workshop rather than across various workshops, which

can reduce the complexity of control and maintain balanced

loadings for these robots. Based on this consideration, we divide

the whole robot team into sub-teams each responsible for a

specific workshop and select one of these workshops as the

experiment environment in this study. Figure 5 (b) presents a

workshop of the smart factory represented with a grid map

(13×18 cells). The storage zones are specified as raw material

areas (𝐴1, 𝐴2), semi-finished product areas (𝐵1, 𝐵2), and finished

product areas (𝐶1, 𝐶2). The mobile robots can perform loading or

unloading tasks in the light green cells. The working scenario in

this workshop is provided as follows.

After receiving the starting signal, a mobile robot leaves from

the docking area, goes to the raw material area to load and

transports a task to a machining center. Then, the machining

center starts to process it. After that, this robot will be assigned

to transport other tasks. When the machining center finishes the

6 Copyright © 2022 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/IM

EC
E/proceedings-pdf/IM

EC
E2022/86649/V02BT02A058/6980556/v02bt02a058-im

ece2022-95364.pdf by Shanghai Jiaotong U
niversity user on 24 February 2023

assigned task, the output (e.g., processed parts) will then be

picked up by one of the available robots and transported to

another machining center or a shelf in the storage zone. After

completing all tasks assigned to it, the robot will stop at the

docking area to avoid collisions with other robots that are still in

working status. This process will iterate until all tasks are

completed.

We examined the performance of our approach in this

environment and working scenario with different number of

robots and tasks. Moreover, we developed a simulation platform

based on MATLAB. This platform can visualize the machining

centers, storage zones and docking zones in a workshop of smart

factory, and mark out the starting positions and goal positions of

all the transportation tasks. It can also dynamically display the

moving paths of the robot team, which supports verifying the

feasibility of the proposed approach (e.g., we can observe

whether two robots conflict with each other in performing tasks).

Usually, the quantity of transportation tasks to complete per

work shift in a workshop of smart factory is limited by the

processing capability of the machining centers. Therefore, we

tested 200 to 1000 tasks in this experiment. The initial positions

of some mobile robots and the starting and goal positions of

some tasks are randomly assigned, while others are unknown

considering the precedence constraints of tasks. The weighted

sum method is used to convert the multiple objective functions

into a single objective function. We use 𝑤𝑡 to represent the

weight of transportation time and processing time, and 𝑤𝑒 to

represent the weight of energy consumed by machining centers.

The assignment of weights is related to the decision maker's

preference for these objectives.

(a) (b)

FIGURE 5: (A) SKETCH OF THE SMART FACTORY; (B) SKETCH OF A WORKSHOP IN THE SMART FACTORY.

3.2 Experiment results

We validate the feasibility of our proposed approach by

comparing the total time and energy consumption following

three strategies as shown in Figure 6. Here the total time and

energy consumption (𝑇𝐶) are normalized following Equation

(16):

 normalized 𝑇𝐶 =
𝑐−𝑐𝑚𝑖𝑛

𝑐𝑚𝑎𝑥−𝑐𝑚𝑖𝑛
 (16)

where 𝑐 is the time and energy consumed for transportation and

processing, 𝑐𝑚𝑎𝑥 and 𝑐𝑚𝑖𝑛 are the maximum/minimum sum

of time or energy consumed for transporting and processing.

Here the baseline strategy means a task will be assigned to a

machining center at the time point right after the last task

assigned to this machining center. The results in Fig. 6 show that

the total time and energy consumption grows with the number of

tasks, and the proposed Regret-based Search Strategy (RSS)

performs better than the Looking-backward Search Strategy

(LSS), and both RSS and LSS outperform the baseline strategy

for a varying number of robots and tasks.

By comparing (a) vs. (b) and (c) vs. (d) in Fig. 6, we can

observe that when the baseline strategy is adopted, increasing the

number of robots will not significantly reduce the total

consumption. For example, when using the baseline strategy and

𝑛 = 1000, the normalized 𝑇𝐶 in (a) and (b) is 0.921 and

0.909, respectively. However, the total consumption decreases

markedly if the LSS or RSS is used. For example, when using

LSS and 𝑛 = 1000 , the normalized 𝑇𝐶 in (a) and (b) is

0.816 and 0.751, respectively. One possible explanation is that

when the processing time and energy consumption of machining

centers are not considered (e.g., in warehousing and logistics

scenarios), more robots will support faster completion of tasks.

However, when the processing time and energy consumption of

machining centers are considered (e.g., in a smart factory

environment), even if the number of robots is increased and the

tasks can be transported to machining centers faster, it still takes

a certain amount of time for machining centers to process these

tasks, which leads to the queuing of tasks and waiting of robots,

and the total time consumption will not be significantly reduced.

However, the LSS or RSS can reorganize the processing

sequence of tasks in real time, which can alleviate the queuing

issue and reduce the waiting time for robots. Thus, the decrease

of 𝑇𝐶 will be more obvious when LSS or RSS is adopted.

In addition, by comparing (a) vs. (c) and (b) vs. (d) in Fig. 6,

we can observe the influence of different weights of time and

energy on the final performance. For example, if using RSS,

when robots = 5 , 𝑤𝑡 = 0.6 , 𝑤𝑒 = 0.4 , 𝑛 = 1000 , the

normalized 𝑇𝐶 = 0.743, while when robots = 5, 𝑤𝑡 = 0.4,

7 Copyright © 2022 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/IM

EC
E/proceedings-pdf/IM

EC
E2022/86649/V02BT02A058/6980556/v02bt02a058-im

ece2022-95364.pdf by Shanghai Jiaotong U
niversity user on 24 February 2023

𝑤𝑒 = 0.6, 𝑛 = 1000, the normalized 𝑇𝐶 = 0.881. This result

indicates that the advantage of RSS is more pronounced when

the weight of time (𝑤𝑡) is larger. A possible explanation is that

the search of the machining sequence is performed only after

each determination of which machining center is assigned, i.e.,

the energy consumption does not vary with the insertion position

since we only consider the time consumed by the machining

center without considering the energy consumption during its

idle time.

Figure 7(a) indicates that the number of search iterations

increases along with the increasing number of tasks. The number

of search iterations using RSS is greater than that using LSS,

which can lead to slightly longer computing time as shown in

Figure 7(b). We also check the generated paths of each robot in

a simulation environment developed with MATLAB as shown in

Fig. 8, and no conflicting paths are found.

(a) (b)

(c) (d)

FIGURE 6: NORMALIZED TOTAL CONSUMPTION (𝑇𝐶) VERSUS NUMBER OF TASKS WITH DIFFERENT NUMBER OF

ROBOTS AND WEIGHTS.

8 Copyright © 2022 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/IM

EC
E/proceedings-pdf/IM

EC
E2022/86649/V02BT02A058/6980556/v02bt02a058-im

ece2022-95364.pdf by Shanghai Jiaotong U
niversity user on 24 February 2023

FIGURE 7: (A) THE NUMBER OF SEARCHING

ITERATIONS VERSUS NUMBER OF TASKS.

FIGURE 7: (B) RUNTIME VERSUS NUMBER OF TASKS.

FIGURE 8: SIMULATION ENVIRONMENT DEVELOPED

IN MATLAB TO VERIFY THE FEASIBILITY OF

GENERATED PATHS FOR MOBILE ROBOTS.

4. CONCLUSION
In this paper, we present an integrated task and path planning

approach for mobile robots in smart factory. The basic idea is

that in the stage of task assignment, the real paths for mobile

robots are identified and the time and energy consumed by

mobile robots and machining centers are calculated. Then a

greedy strategy working with the Looking-backward Search

strategy or Regret-based Search Strategy is used to obtain task

assignments in time-series that achieve the proposed objectives,

which enables a joint optimal solution for both task assignment

and path planning. The real time consumed on the planned paths

is used as the basis to adjust and improve the selection of mobile

robots and task assignments, and the precedence constraints

between sequential manufacturing tasks are considered

simultaneously.

We compare the performance of different searching strategies

in a simulated factory environment. The results show that the

proposed LSS and RSS are better than the traditional strategy

when the number of tasks or robots increases, especially when

the number of tasks is large. In addition, when the weight of time

consumed increases, the advantage of our approach becomes

more noticeable. The proposed approach generally will not take

long computing time, and it can help reduce the idle time of

machining centers and make full use of these resources to

improve the overall operational efficiency of smart factory.

One limitation of this paper is that the size of the studied

workshop is relatively small. We will examine the reliability and

computational efficiency of the proposed approach in a large-

scale factory environment where the planning and scheduling of

transportation tasks for mobile robots can be more difficult. The

complex relationship between manufacturing time and

consumed energy will also be considered in future work.

ACKNOWLEDGEMENTS
The authors would like to acknowledge the financial support

from the National Natural Science Foundation of China

(52005328) and Shanghai Science and Technology Commission

“Yangfan” Program (20YF1419300).

REFERENCES
[1] Yadav, Anupma, Jayswal, S., and C., 2018, “Modelling

of Flexible Manufacturing System: A Review,” Int. J.

Prod. Res., 56(7–8), pp. 2464–2487.

[2] Brown, K., Peltzer, O., Sehr, M. A., Schwager, M., and

Kochenderfer, M. J., 2020, “Optimal Sequential Task

Assignment and Path Finding for Multi-Agent Robotic

Assembly Planning,” 2020 IEEE International

Conference on Robotics and Automation (ICRA), pp.

441–447.

[3] Korsah, G. A., Stentz, A., and Dias, M. B., 2013, “A

Comprehensive Taxonomy for Multi-Robot Task

Allocation,” Int. J. Rob. Res., 32(12), pp. 1495–1512.

9 Copyright © 2022 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/IM

EC
E/proceedings-pdf/IM

EC
E2022/86649/V02BT02A058/6980556/v02bt02a058-im

ece2022-95364.pdf by Shanghai Jiaotong U
niversity user on 24 February 2023

[4] Stern, R., 2019, “Multi-Agent Path Finding--an

Overview,” Artif. Intell., pp. 96–115.

[5] Yu, J., and LaValle, S. M., 2013, “Multi-Agent Path

Planning and Network Flow,” Algorithmic Foundations

of Robotics X, Springer, pp. 157–173.

[6] Ma, H., Wagner, G., Felner, A., Li, J., Kumar, T. K., and

Koenig, S., 2018, “Multi-Agent Path Finding with

Deadlines,” arXiv Prepr. arXiv1806.04216.

[7] Bredstrom, D., and Rönnqvist, M., 2007, “A Branch and

Price Algorithm for the Combined Vehicle Routing and

Scheduling Problem with Synchronization Constraints,”

NHH Dept. Financ. \& Manag. Sci. Discuss. Pap.,

(2007/7).

[8] Yu, J., and LaValle, S. M., 2015, “Optimal Multi-Robot

Path Planning on Graphs: Structure and Computational

Complexity,” arXiv Prepr. arXiv1507.03289.

[9] Bennewitz, M., Burgard, W., and Thrun, S., 2002,

“Finding and Optimizing Solvable Priority Schemes for

Decoupled Path Planning Techniques for Teams of

Mobile Robots,” Rob. Auton. Syst., 41(2–3), pp. 89–99.

[10] Erdem, E., Kisa, D. G., Oztok, U., and Schüller, P., 2013,

“A General Formal Framework for Pathfinding

Problems with Multiple Agents,” Twenty-Seventh AAAI

Conference on Artificial Intelligence.

[11] Dai, M., Tang, D., Giret, A., and Salido, M. A., 2019,

“Multi-Objective Optimization for Energy-Efficient

Flexible Job Shop Scheduling Problem with

Transportation Constraints,” Robot. Comput. Integr.

Manuf., 59, pp. 143–157.

[12] Hönig, W., Kiesel, S., Tinka, A., Durham, J., and

Ayanian, N., 2018, “Conflict-Based Search with

Optimal Task Assignment,” Proceedings of the

International Joint Conference on Autonomous Agents

and Multiagent Systems.

[13] Sharon, G., Stern, R., Felner, A., and Sturtevant, N. R.,

2015, “Conflict-Based Search for Optimal Multi-Agent

Pathfinding,” Artif. Intell., 219, pp. 40–66.

[14] Chen, Z., Alonso-Mora, J., Bai, X., Harabor, D. D., and

Stuckey, P. J., 2021, “Integrated Task Assignment and

Path Planning for Capacitated Multi-Agent Pickup and

Delivery,” IEEE Robot. Autom. Lett., 6(3), pp. 5816–

5823.

[15] Silver, D., 2005, “Cooperative Pathfinding,”

Proceedings of the Aaai Conference on Artificial

Intelligence and Interactive Digital Entertainment, pp.

117–122.

10 Copyright © 2022 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/IM

EC
E/proceedings-pdf/IM

EC
E2022/86649/V02BT02A058/6980556/v02bt02a058-im

ece2022-95364.pdf by Shanghai Jiaotong U
niversity user on 24 February 2023

