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ABSTRACT 
Efficient motion planning methods are essential to ensure 

industrial robots to work properly and safely. Although 

sampling-based planning algorithms are viable ones, they often 

struggle to adapt to highly constrained and complex 

environments. This paper introduces a new robot motion 

planning approach for such environments, utilizing a multi 

rapidly-exploring random trees exploration structure. The 

approach combines the fast exploration property of RRT-based 

methods with the global exploration property of multi-tree 

structures. In the subtree generation, an information gain-based 

method is used to analyze the sampled information from multiple 

trees to compute the potential information gain at various 

subtree generation locations. By selecting the locations with 

higher information gain, our method can effectively improve the 

exploration quality of the environment. Furthermore, an 

adaptive local subtree planning method is developed, which 

relies on local structure information and dynamically updates 

the sampling distribution to maximize the possibility of forming 

feasible trajectories in narrow passages. The effectiveness of the 

proposed approach is tested in 2D, 4D, and 6D environments, 

along with a complex material picking scenario. These 

experiments demonstrate that the proposed approach surpasses 

the performance of other algorithms, particularly in those highly 

constrained and complex environments. Our study contributes to 

the development of advanced and highly-adaptive motion 

planning methods for robots in complex environments. 

Keywords: Motion planning, Multi rapidly-exploring 

random tree, Information gain, Adaptive local planning 

* Corresponding author, Assistant Professor in Mechanical Engineering, Shanghai Jiao Tong University 

Email: youyi.bi@sjtu.edu.cn 

1. INTRODUCTION
Robots have become increasingly prevalent in various

aspects of manufacturing [1], including assembly, transportation, 

inspection, etc. As the manufacturing environments and jobs 

become more complex, robots will have higher risk to collide 

with obstacles of materials, human workers, and other robots. 

For example, when using robotic arm for assembly, the arm 

needs to maneuver around parts and components of different size 

while avoiding collisions with the table, wires and sensors. 

Collisions during the assembly process not only can result in loss 

of equipment, but may also cause interrupted production paces 

[2]. Consequently, effective motion planning methods are crucial 

to ensure robots to work safely and efficiently when performing 

tasks in complex environments. 

Motion planning involves finding feasible motion 

trajectories for robots under physical constraints while avoiding 

collisions with obstacles. Robots usually operate in a distinct 

space compared to humans, known as the configuration space 

(C-space). The C-space represents the set of all potential 

configurations, characterized by a given degree of freedom for 

the robot. While additional joints provide robots increased 

flexibility, they also introduce greater computational complexity 

due to the exponential relationship between the complexity of 

the C-space and the robot’s degrees of freedom, which is often 

referred to as the curse of dimensionality. Sampling-based 

motion planning algorithms (SBPs) address this issue through a 

random sampling strategy. SBPs do not need to explicitly 

construct the intractable high-dimensional C-space. Instead, they 

iteratively build a connected roadmap by concatenating valid 
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samples of the C-space. Theoretically, SBPs can guarantee 

probabilistic completeness [3], signifying that given an infinite 

number of sampling points, a solution can be discovered with a 

certain probability, if it exists. Further theoretical advancements 

have demonstrated the asymptotic optimality of SBPs [4], 

ensuring that these algorithms will find a solution that is close to 

the optimal one as the number of samples increases.  

Although SBPs own the advantages mentioned above, their 

running time is significantly affected by the C-space complexity. 

Higher spatial complexity results in longer running time, making 

it challenging for SBPs to handle highly constrained and 

complex environments, where generating valid samples in the 

search space is extremely difficult or even impossible. For 

example, when finding path through a narrow passage, the 

likelihood of selecting a sample point inside the passage is 

relatively low due to the limited free space. Additionally, if the 

sampling tree fails to expand successfully, it may discard the 

failed sampling points that fall within the narrow passage. 

Consequently, narrow passages can hinder tree growth until a 

series of tree expansions successfully establish connections 

within the restrictive space. As illustrated in Figure 1, the 

probability of successfully extending a connection from the 

initial configuration into a narrow passage is very low. 

Furthermore, such sampling process would need to occur 

multiple times in the nearby regions to establish the entire path 

along the narrow passage. 

Traditional SBP methods often use incremental sampling of 

single or double tree structures to construct a roadmap of 

connected nodes. However, these methods may discard valid 

samples when there is no free path from the nearest node to the 

sampled point in C-space. This limitation arises due to the tree 

expansion’s being confined to the local area restricted by the 

boundary tree nodes. This situation becomes even worse in 

complex C-spaces, where feasible routes are scarce. To address 

this issue, we propose a robot motion planning approach that 

leverages a multi-tree structure to explore the C-space, 

maintaining high visibility and preserving local connectivity 

information without overlooking those already planned points. It 

can effectively address motion planning problems in highly 

constrained environments. The main contributions of this paper 

include: 

- A multi-tree RRT structure that combines the advantages 

of rapid and global exploration is developed. This structure 

enhances the efficiency of the exploration process and 

effectively mitigates the challenges associated with complex 

environments often encountered in single-tree planning. 

- An information gain-based subtree generation method that 

enables more efficient environment exploration is designed. This 

method prevents excessive attention on areas that have already 

been fully explored and improves the efficiency of the planning 

process. 

- An adaptive local subtree planning method that 

dynamically updates the sampling direction and step size based 

on real-time information from local subtree planning is 

introduced. This method explores both successful and failed 

plannings and increases the likelihood of generating successful 

sample points and connections. 

The effectiveness of the proposed approach is examined in both 

computer simulations and physical experiments. Our approach 

shows strong motion planning capability and adaptability in 

complex environments. 

The rest of the paper is structured as follows. Section 2 

presents a literature review of previous methods addressing the 

sampling problem in highly-constrained spaces. Section 3 

introduces the proposed approach and explains the key 

techniques involved. Section 4 showcases the effectiveness of 

the proposed approach through 2D, 4D, and 6D simulation 

experiments, as well as physical experiments in industrial pick-

and-place scenarios. Section 5 provides the summary of this 

work and highlights potential directions for future research. 

FIGURE 1: Motion planning for a four-degree-of-freedom robot arm (two rotational joints 𝜃1 and 𝜃2, and two positional 

locations 𝑥 and 𝑦). (a) and (b) present the workspace, while (c) illustrates the configuration space containing the robot arm’s 

motion trajectory. Although the workspace seems to have ample free space, the configuration space reveals a significant 

challenge in motion planning. This is due to the presence of numerous narrow passages and inaccessible areas within the 

configuration space, making motion planning considerably difficult. 
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2. RELATED WORK 

As a class of popular methods in robot motion planning, 

SBP algorithms have achieved relatively high efficiency and 

accuracy in motion planning by randomly sampling the 

environment and iteratively building a connected path from the 

robot’s valid configuration space [5]. SBP algorithms can be 

categorized into single-query and multi-query approaches. 

Single-query planners, such as rapidly-exploring random tree 

(RRT) [6], generate a feasible path by connecting an initial point 

to a target point. In contrast, multi-query planners (e.g., 

probabilistic road map (PRM) [7]), construct a roadmap that 

facilitates efficient execution of multiple path query instances. 

However, in highly constrained spaces, generating valid samples 

for either single or multi-query approaches can be challenging, 

and the possibility of forming valid sampling connections is low. 

Consequently, these algorithms may struggle to find paths with 

limited time. To address this issue, researchers have developed 

various new strategies or methods, such as bridge tests, bias 

toward regions with narrow structures, heuristic measures of 

obstacle boundaries, multi-tree structures, and learning-based 

techniques to improve the sampling process. 

The core idea of the bridge test [7] involves checking 

collisions among two endpoints and the midpoint of a line 

segment connecting these endpoints. If both endpoints collide 

while the midpoint remains collision-free, the midpoint is 

accepted as a new node in the roadmap under construction. This 

method is difficult to scale as the complexity of the C-space 

increases and often ignores prior knowledge since each run is a 

new start. 

The motion planning method based on bias toward regions 

with narrow structures is try to adjust the distribution of sampling 

points and corresponding computational resources online 

according to the geometric complexity of local regions [8]. 

Various methods based on this idea have been developed, 

including dynamic domain RRT [9], principal component 

analysis [10], hybrid Gaussian models [11], and virtual force 

field [8]. However, when bias is overly strong, these methods 

may be stuck in local areas near a narrow structure, and fail to 

find feasible solutions elsewhere in the search space. 

Motion planning algorithms with heuristic measures of 

obstacle boundary are designed to generate samples closer to the 

obstacle boundary by employing heuristic measures. For 

example, Ma et al. [12] propose a heuristic-based certificate set 

which maintains information with collision status and minimum 

distance to the nearest obstacle during the planning process and 

reuses that information in following iterations. However, 

obstacles are often not explicitly represented in C-space, making 

it challenging for heuristic measures to discover multiple narrow 

passages. 

As for the motion planning methods based on multi-tree 

structures, their basic idea is to generate multiple trees to explore 

different regions simultaneously. Such methods include 

bidirectional RRT connection algorithms [9], sampling-based 

tree roadmaps (SRT) [13], C-FOREST [14] Triple-RRTs [15], 

RRdT [16] and MT-RRT [17], each offering unique advantages. 

Multi-tree structures can explore configuration spaces more 

thoroughly and diversely compared to single-tree structures, as 

each tree can focus on a different region or direction in the space. 

These structures can also use information from other trees to 

sample more points and expand trees in the promising regions of 

C-space. However, multi-tree structures can increase algorithm 

complexity with higher requirement of computational resource. 

Thus, more effective multi-tree generation and planning 

strategies with balanced resource allocation are needed. 

In recent years, learning-based methods have been 

developed to guide sampling decisions in motion planning by 

learning from planning examples. Itcher et al. [18] train a 

conditional variational autoencoder using prior successful 

planning results to sample and project to promising regions in 

the working space. Wang et al. [19] propose a learning-based 

multi-RRT (LM-RRT) method that extracts key locations and 

selects subtree expansion with a reinforcement learning ε-greedy 

strategy. Tai et al. [20] utilize the Markov chain method for 

sampling exploration and update the chain-like sampling order 

with Bayesian techniques. Khan et al. [21] employ a graph neural 

network to encode the topology of C-space and calculate 

sampling distribution parameters. MPNet [22] generates feasible 

near-optimal paths directly using an encoding network and a 

planning network. However, challenges still remain for these 

learning-based methods when dealing with complex 

environments. Errors due to computational approximations or 

training-test mismatches can cause these methods to fail, 

highlighting the importance of enhancing the adaptiveness of 

motion planning methods. 

In this paper, we combine the strengths of RRT-based 

planning and the multi-tree structure framework. Critical 

processes such as subtree generation and subtree planning are 

optimized and guided by a learning-based approach. Our 

approach allows better adaptation to highly constrained and 

complex environments with enhanced algorithmic efficiency and 

generalizability. 

 

3. METHODS 
 

3.1 The Overall Workflow of The Proposed Approach 
The proposed approach, referred to as the Adaptive Multi-

Rapidly-exploring Random Trees (AMRRT) algorithm, employs 

a multi-tree structure to effectively utilize information from 

sampled points for exploring and exploiting different regions of 

the C-space, achieving a balance between global exploration and 

local exploitation. The pseudo-code of AMRRT is presented in 

Algorithm 1, which can be split into four parts: (1) Initialization 

(Line 1–5), setting the growing trees 𝑇𝑠𝑡𝑎𝑟𝑡  and 𝑇𝑔𝑜𝑎𝑙 , and 

other 𝑚 multi-subtree samplers; (2) Subtree generation (Line 

8), generating the subtree at the appropriate location; (3) Subtree 

selection (Line 9), selecting the corresponding tree to expand 

based on the energy value 𝐸(𝒯)  of the trees; (4) Subtree 

planning (Line 1), if 𝑇𝑖  is subtree, we utilize adaptive local 

subtree sampling to exploit local structure.  

In the stage of subtree generation, we design an information 

gain-based subtree generation method using the mean shift 

algorithm (see Line 8 in Algorithm 1). This method calculates 
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the current clustering of sampled points by analyzing the multi-

tree structure’s point set, treating the centroids of clusters as fully 

explored regions. New subtree generation then selects locations 

with higher information gain for more efficient environment 

exploration.  
In the stage of subtree planning, an adaptive subtree 

planning algorithm (see Line 11 in Algorithm 1) is developed. 

This algorithm updates the sampling direction and step size for 

constrained areas by considering past successful and failed 

expansions, and sequentially creates connected points to 

maximize the likelihood of forming feasible trajectories in 

narrow passages. 

 

 
 

It is worth noting that the multi-tree structure from RRdT 

[16] is incorporated in the proposed AMRRT approach, as 

depicted in Figure 2. Specifically, we utilize the RRT algorithm’s 

expansion for 𝑇𝑠𝑡𝑎𝑟𝑡 and 𝑇𝑔𝑜𝑎𝑙 (e.g., the blue and yellow trees 

in Fig. 2). For the remaining generated subtrees (e.g., the green, 

orange, and purple trees in Fig. 2), we employ the expansion of 

the sequential Markov Chain Monte Carlo (MCMC) to 

effectively leverage local connectivity, leading to improved 

exploitation of local regions within the C-space. In the following 

subsections, the details of subtree generation and adaptive local 

subtree planning are provided. 

 
FIGURE 2: Multi-tree structure of AMRRT. The two red dots 

𝑋𝑠𝑡𝑎𝑟𝑡  and 𝑋𝑔𝑜𝑎𝑙  represent the start and goal points 

respectively. The blue and yellow trees, 𝑇𝑠𝑡𝑎𝑟𝑡  and 𝑇𝑔𝑜𝑎𝑙 , 

depict the trees constructed from the start and goal points, while 

the other colored trees ( 𝑇𝑠𝑢𝑏1, 𝑇𝑠𝑢𝑏2, 𝑇𝑠𝑢𝑏3 ) represent the 

remaining generated subtrees. Gray areas are obstacles. 

 
3.2 Information Gain-based Subtree Generation 

Subtree generation is a crucial step in AMRRT, where a 

new subtree is created from a sampled point in the C-space to 

explore new regions and find feasible paths for a moving robot. 

However, traditional methods for subtree generation have 

several limitations. Randomly generating subtrees can lead to 

inefficient exploration and redundant computation. On the other 

hand, pre-processing the search space to identify key regions and 

generating subtrees in those regions may be computationally 

expensive. The performance of this strategy highly relies on the 

pre-processing effect, and its exploration capability is limited. 

Considering these limitations, we propose an information gain-

based subtree generation method using the mean shift algorithm. 

The information in a configuration space can be seen as a 

measure of the exploration level in a particular region, and higher 

information indicates less exploration in a region. Our method, 

referred as information gain, aims to improve the efficiency of 

exploration in the multi-tree structure by avoiding wasteful 

sampling in those already explored regions. To achieve this, we 

utilize the mean-shift clustering algorithm [23], which is a non-

parametric method that does not make assumptions about the 

shape of the distribution or the number of clusters. It treats the 

data points in the feature space as an empirical probability 

density function and identifies dense regions as local maxima or 

modes of the distribution. For each data point, a gradient ascent 

procedure is performed on the local estimated density until 

convergence is reached, resulting in stationary points that 

represent the modes. Data points associated with the same 

stationary point are considered to belong to the same cluster, 

allowing us to identify areas of the C-space that have been fully 
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explored. Subsequently, we compare the distances between the 

random subtree generation sets and the cluster centroids. Based 

on these distances, we normalize them to form probabilities, and 

use these probabilities to select new subtree generation points. 

The pseudo-code of information gain-based subtree generation 

is showed in Algorithm 2.  

 

 
 

The implementation details of the mean shift algorithm are 

provided below. Given 𝑛𝑚𝑠 sampled points 𝑥𝑖 ∈ ℝ
𝑑 from the 

tree 𝒯, the multivariate kernel density estimate using a radially 

symmetric kernel (i.e., Gaussian kernels), 𝐾(𝑥), is given by, 

𝑓𝐾 =
 

𝑛ℎ𝑑
∑ 𝐾(

𝑥 − 𝑥𝑖
ℎ

)                                                          (1)
𝑛

𝑖=1
 

where ℎ (the bandwidth parameter) defines the radius of kernel. 

The radially symmetric kernel is defined as, 

𝐾(x) = 𝑐𝑘,𝑑𝑘(∥ 𝑥 ∥
2)                                                                      (2) 

where 𝑐𝑘,𝑑  represents a normalization constant which assures 

the integral of 𝐾(x) from negative infinity to positive infinity 

is 1. Taking the gradient of the density estimator in Equation (1) 

and further algebraic manipulation yields, 

∇𝑓(𝑥)

=
 𝑐𝑘,𝑑
𝑛ℎ𝑑+2

[∑𝑔 (∥
𝑥 − 𝑥𝑖
ℎ

∥2)

𝑛

𝑖=1

]
⏟            

𝑓𝑖𝑟𝑠𝑡 𝑡𝑒𝑟𝑚
[
 
 
 ∑ 𝑥𝑖𝑔(∥

𝑥 − 𝑥𝑖
ℎ

∥2
𝑛

𝑖=1
)

∑ 𝑔(∥
𝑥 − 𝑥𝑖
ℎ

∥2
𝑛

𝑖=1
)
− 𝑥

]
 
 
 

⏟                  
𝑠𝑒𝑐𝑜𝑛𝑑 𝑡𝑒𝑟𝑚

( )  

 

where 𝑔(𝑥) = −𝑘′(𝑥) denotes the derivative of the selected 

kernel function. The first term is proportional to the density 

estimate at 𝑥 (computed with the kernel 𝐺 = 𝑐𝑔,𝑑𝑔(∥ 𝑥 ∥
2) ). 

The second term, called the mean shift vector, 𝑚, points toward 

the direction of maximum increase in density and is proportional 

to the density gradient estimate at point 𝑥 obtained with kernel 

𝐾. The mean shift procedure for a given point 𝑥𝑖 is illustrated 

in Fig. 3 and its main steps are as follows:  

(1) Compute the mean shift vector 𝑚(𝑥𝑖
𝑗
). 

(2) Translate density estimation window: 𝑥𝑖
𝑗+1

= 𝑥𝑖
𝑗
+

𝑚(𝑥𝑖
𝑗
). 

(3) Iterate Steps (1) and (2) until convergence, i.e., 𝛻𝑓(𝑥𝑖) =
 . 

(4) Sampled points that converge to the same stationary point 

are considered as the same cluster class. 

The subtree generation sets are denoted by 𝑆 =
{𝑠1, … , 𝑠j, . . . , 𝑠𝑘} ,  ≤ 𝑗 ≤ 𝑘  where 𝑠𝑗  represents the 𝑗 -th 

subtree generation point, and the cluster centroids are denoted by 

𝐶 = {𝐶1, 𝐶2, . . . , 𝐶ℎ} , where 𝐶ℎ  represents the ℎ -th cluster 

centroid. The distance between 𝑠𝑗  and 𝐶  can be calculated 

using the shortest Euclidean distance, denoted as 𝑑(𝑠𝑗 , 𝐶). After 

computing the distances, we can normalize them to form 

probabilities. The probability of selecting 𝑠𝑗  from 𝑆  can be 

calculated as: 

𝑝(𝑠𝑗) = 𝑒𝑥𝑝(𝑑(𝑠𝑗 , 𝐶))/∑𝑒𝑥𝑝(𝑑(𝑠𝑖 , 𝐶))                               

𝑘

𝑖=1

( ) 

Finally, we select new subtree generation point s ∈ 𝑆 

based on their probabilities 𝑃(𝑆) = {𝑝(𝑠1), 𝑝(𝑠2), . . . , 𝑝(𝑠𝑘)}. 
 

 
FIGURE 3: An illustration of the mean shift procedure. Starting 

at sampling point 𝑥𝑖, the mean shift procedure is run to find the 

stationary points of the density function. The superscripts  , , 𝑗 
of 𝑥𝑖  denote the mean shift iterations. Black dots denote the 

input data points and successive window centers. The dotted 

circles denote the density estimation windows. 

 

Additionally, we introduce the concept of energy for each 

tree, which represents its life cycle with an initial value. The 

energy of a tree is reduced whenever it fails in planning, which 

can prevent the tree from getting stuck in local traps such as dead 

ends or narrow passages. In each step of the planning process, 

we normalize the energy values of all trees, forming a discrete 

probability distribution (see Algorithm 3). The tree is then 
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selected for expansion based on this probability distribution, 

considering the relative probabilities of each tree. When the 

energy of a subtree is exhausted, we regenerate the subtree in a 

new region, actively exploring new regions for path planning. 

 

 
 

3.3 Adaptive Local Subtree Planning 

After selecting a tree based on its energy probability 𝐸(𝒯), 
the next step is to determine whether the selected tree is 𝑇𝑠𝑢𝑏. If 
it is, then the process of subtree planning involves determining 

the sampling direction (𝑑) and expansion step size (𝜖) to extend 

the current configuration ( 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ) to a new configuration 

(𝑥𝑛𝑒𝑤), i.e., 𝑥𝑛𝑒𝑤 ← 𝑥current + 𝜖 ⋅ 𝑑, with a higher probability of 

success. However, previous studies rarely considered to 

determine the sampling distribution and expansion step size 

adaptively during subtree planning in an integrated way. 

To address this gap, we propose an adaptive local subtree 

planning algorithm that considers the sampling distribution as a 

Markov process with unobservable states, and models the 

proposed distribution using tree sampling information from prior 

successful and failed samples. This approach effectively 

leverages information from failed planning points that is often 

overlooked in traditional methods, providing valuable insight 

into future planning processes. Furthermore, we leverage past 

expansion information to support the precise determination of 

the step size of the local subtree planning. Notably, this process 

takes the complexity of the surrounding environment into 

consideration. 

Before introducing the specific methods, some basic 

concepts need to be clarified. In our approach, the subtree 

planner is modeled using the state 𝒮𝑇𝑖,𝑡 , where 𝑇𝑖 ∈ 𝒯 

represents the spatial location and information set in the local 

planning step 𝑡 . This state can be represented as the tuple 

𝒮𝑇𝑖,𝑡 = (𝑥𝑖,𝑡 , 𝒟𝑠,𝑡 , 𝒟𝑓,𝑡 , 𝑑𝑖,𝑡 , 𝜖𝑖,𝑡 , ℬ𝑖(𝑅)) , with 𝑥𝑖,𝑡  being the 

spatial location, 𝒟𝑠,𝑡 representing the previously successful unit 

vector value, 𝒟𝑓,𝑡  recording the failed unit vector value, 𝑑𝑖,𝑡 

being the sampling direction, 𝜖𝑖,𝑡  being step size and ℬ𝑖(𝑅) 
representing the hypersphere with radius 𝑅 . Algorithm 4 

presents the pseudo-code for adaptive local subtree planning. 

 

 
 

3.3.1 Sampling distribution  

For sampling direction 𝑑𝑖,𝑡, we propose a method that uses 

Bayesian update rules [20] to model the proposed distribution, 

and optimize the parameter selection of the kernel function. This 

method aims to incorporate information from both successful 

 

 

 

 

 

 

(a) (b) (c) (d)

FIGURE 4: An example of sampling distribution updating. (a) shows how the subtree expands from 𝑡 =   to 𝑡 = 5, with solid 

orange lines indicating successful expansion and dashed purple lines indicating failed expansions. (b) depicts the uniform 

sampling at 𝑡 =  , with red arrow indicating the sampling direction drawn from it. (c) presents the von Mises-Fisher distribution 

at 𝑡 =  , with red arrow showing the sampling direction drawn from it. (d) illustrates the Bayesian update distribution at 𝑡 =  , 

with red arrow denoting the successful sampling attempt and purple arrows representing failed attempts. 
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and failed samples to update the sampling distribution. Figure 4 

shows an example of sampling distribution updating.  
To effectively inherit insights from successful sampling 

directions while incorporating a stochastic component, we opt 

for the von Mises-Fisher distribution, denoted as 𝑝(𝜃; 𝜅, 𝜇), to 

serve as the initial prior distribution 𝑑𝑖,𝑡,0 ∼ 𝒟𝑖,𝑡,0(𝜃) =
𝑝(𝜃; 𝜅, 𝜇)  [24]. The von Mises-Fisher distribution is a 

probability distribution on the unit sphere, specifically designed 

to model directional data.  

𝑝(𝜃; 𝜅, 𝜇) =
 

 𝜋𝐼𝑣(𝜅)
exp(𝜅[𝜃 − 𝜇])                                          (5) 

𝐼𝜈(𝜅) =
 

𝜋
∫ exp(𝜅cos𝜃)cos(𝜈𝜃)𝑑𝜃                                         
𝜋

0

( ) 

where 𝜃  is the random angular variable, 𝜇 is the average 

direction, i.e., the previously sampled successful direction, 

where −𝜋 ≤ 𝜃, 𝜇 < 𝜋，𝑣 =   . 𝜅  is a measure of the 

concentration of the probability density function, located in the 

semi-infinite interval [ ,∞). The larger 𝜅 means the selection 

of 𝜃 is more concentrated in the mean direction. 𝐼𝑣(𝜅) is the 

first class of modified Bessel functions. Based on the Bayesian 

update principle, the update of the sampling distribution can be 

expressed as follows: 

𝒟𝑖,𝑡(𝜃) = 𝒟𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(𝜃) ∝ 𝒟𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∙ 𝒟𝑝𝑟𝑖𝑜𝑟 .                       (7) 

Then the periodic kernel function 𝑘(⋅)  that encapsulates 

the idea of having a decreasing nature to resample in previously 

sampled regions is used to construct 𝒟𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∝  − 𝑘(⋅). The 

kernel function 𝑘(⋅) is formulated as follows: 

𝑘(𝜃, 𝜃𝑖,𝑡,𝑗) = 𝜎𝑓
2exp(−

 

ℓ𝑒𝑞
2
sin2 (𝜋

𝜃 − 𝜃𝑖,𝑡,𝑗

𝑝
))                  ( ) 

where 𝜃𝑖,𝑡,𝑗  represents the 𝑗th sampling of subtree 𝑖 at time 

𝑡 , ℓ𝑒𝑞  is the length scale and 𝜎𝑓
2  is the scaling factor, 

corresponding to the period of the spherical distribution, and 

repetition period 𝑝 is set to  𝜋. Compared to previous work, 

we introduce the parameter ℓ𝑒𝑞, which is positively correlated 

with the size of the set 𝒟𝑓,𝑡. This approach offers the advantage 

of making sampling more exploratory after multiple failures, 

which in turn helps in finding feasible direction in complex and 

narrow environments. The length scale ℓ𝑒𝑞 is calculated as: 

ℓ𝑒𝑞 = 𝛼 + 𝛽( − 𝑒
−|𝒟𝑓,𝑡|)                                                          (9) 

where 𝛼  is a constant term, 𝛽  is a coefficient term and |∙| 
represents the size of the set 𝒟𝑓,𝑡. 

Therefore, we can rewrite the update of the sampling 

distribution 

𝒟𝑖,𝑡,𝑗+1(𝜃) 

= 𝒟𝑖,𝑡,𝑗+1( 𝜃 ∣∣ 𝜃𝑡−1, 𝒟𝑓,𝑡 ∈ 𝒮𝑇𝑖,𝑡 ) 

= 𝒟𝑖,𝑡,𝑗( 𝜃 ∣∣ 𝜃𝑡−1, 𝒟𝑓,𝑡 ∈ 𝒮𝑚𝑖,𝑡 )𝜎𝑗+1 ( − 𝑘(𝜃
, 𝜃𝑖,𝑡,𝑗))         (  ) 

where 𝜎𝑗+1  is the scaling factor, 𝑗  is larger than 0. It is 

important to note that, 𝒟𝑡,𝑖,1(𝜃 ∣ 𝜃𝑡−1, 𝒟𝑓,𝑡 ∈ 𝒮𝑇𝑖,𝑡) reduces to 

𝒟prior (𝜃 ∣ 𝜃𝑡−1, 𝒟𝑓,𝑡: = ∅). Finally, we get the sampling direction 

𝑑𝑖,𝑡,𝑗+1 ∼ 𝒟𝑖,𝑡,𝑗+1(𝜃). In summary, our method can adaptively 

update the sampling distribution based on historical results of 

sampling. 

 

3.3.2 Step size  

In our approach, we consider the selection of step size in 

sampling comprehensively at the regional scale to incorporate 

the information from the surrounding environment. To adjust the 

step size, we consider the previous sampling results of the local 

planner. If the results indicate a smaller search space near the 

current location, the step size is reduced to better explore the 

region, i.e., the path planner becomes more “discreet” in this 

situation. 

 
FIGURE 5: An illustration of the step size selection.The process 

centers on the new subtree, represented by the blue point. State 

information is collected from other subtrees within the range of 

ℬ𝑖(𝑅), which are highlighted by small black circles. The average 

number of failures, represented by |𝒟𝑓|̅̅ ̅̅ ̅̅ , is then calculated. 

 

As shown in Fig.5, ℬ𝑖(𝑅) denotes the hypersphere with a 

radius of 𝑅, which contains the state information of all local 

planners at multiple time steps. We use this regional scope to 

extract the average failed attempts (|𝒟𝑓|̅̅ ̅̅ ̅̅ ) from all local planners 

and optimize the step size selection as follows: 

𝜀𝑖 = 𝛾 (
log(𝑛)

𝑛
)

1
𝑑𝑖𝑚

𝑔(|𝒟𝑓|̅̅ ̅̅ ̅̅ )                                                       (  ) 
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where 𝜀𝑖 is the step size, 𝑟 is a constant, 𝑛 is the number of 

nodes, 𝑑𝑖𝑚 is the dimensionality of the planning problem and 

𝑔(|𝒟𝑓|̅̅ ̅̅ ̅̅ )  is a function that maps the complexity of the state 

information within the hypersphere to a value between 0 and 1, 

reflecting the complexity of the surrounding environment. The 

function 𝑔(|𝒟𝑓|̅̅ ̅̅ ̅̅ ) is defined as: 

𝑔(𝐷𝑓̅̅ ̅) = ℓ𝑒
−|𝒟𝑓|̅̅ ̅̅ ̅̅ 𝐸⁄                                                                        (  ) 

where ℓ is a positive constant that controls the rate of step size 

adjustment based on regional integration, and 𝐸 is the energy 

of the subtree. Our approach can optimize step size selection by 

integrating previous expansion information across the 

predefined region. 

 

4. Experiments 
 

4.1 Experiment scenarios and settings  
We examine the effectiveness of the proposed approach in 

three kinds of simulated motion planning problems, including 

2D scenarios with a mass-point robot, 4D scenario with a robot’s 

rotating arm, and 6D scenario with a robot arm, respectively. 

Additionally, we test our approach in a real material pick-and-

place scenario typically encountered in manufacturing 

environments. 

Figure 6 illustrates the 2D, 4D and 6D experimental 

scenarios. In the 2D scenarios, the robot is considered as a mass 

point moving on a two-dimensional plane. In the 4D scenario, a 

robot with its rotating arm has four degrees of freedom (i.e., 

(𝑥, 𝑦, 𝜃1, 𝜃2) shown in Fig.6(d)). The 6D scenario presents a  

Algorithms Scenario1 (2D) Scenario2 (2D) Scenario3 (2D) Scenario4 (4D) Scenario5 (6D) 

AMRRT 79.6 62.6 623.6 784.4 392.3 

RRT 234.6 953.7 8130.4 1996.2 - 

RRT-Connect 101.9 494.8 5040.2 984.1 1391.8 

BIT 72.4 599.5 - 2494.3 2127.4 

RRdT 95.3 86.1 815.6 901.0 572.6 

LMRRT 68.2  278.9 4000.2- 2100.7 - 

  

  

 ,  

( ,  ,       
Red cup 2Red cup 1

Scenario 1 (2D) Scenario 2 (2D) Scenario 3 (2D)

Scenario 4 (4D) Scenario 5 (6D)

(a) (b) (c)

(d) (e)

Table

obstacles

Bar

obstacles

FIGURE 6: Three 2D (a, b, c), one 4D (d) and one 6D (e) experimental scenarios in our study.  

TABLE 1: Average running time in seconds for different algorithms to obtain initial solutions. Empty cells indicate cases when 

the algorithm failed to obtain a solution. 
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(e)(d)

(a) (b) (c)

FIGURE 7: Cost values against the number of sampling nodes for different algorithms. The solid line represents the mean value, 

while the shaded area indicates the range between the maximum and minimum values. It is worth noting that when the algorithm 

fails to find an initial solution, the cost is set to 0. Due to the batch sampling nature of the BIT algorithm, it is the least sampled 

points in all scenarios for finding the initial solution and cannot be plotted in this figure like other algorithms. 

 

FIGURE 8: Average success rate of different algorithms under a specified planning time limit. (a) is limited to 150s, (b) is limited 

to 500s. (c), (d) and (e) are limited to 1000s. If the histogram of an algorithm is not plotted in the figure, it means that this 

algorithm is unable to generate paths successfully within the given time limit. 

(a) (b) (c)

(d) (e)
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task of moving a robot arm between two tables constructed on 

the Klapmt platform [25]. The six degrees of freedom of the 

robot in this scenario include rotational degrees of six joints. In 

the 2D and 4D scenarios, the starting points (𝑥𝑠𝑡𝑎𝑟𝑡) are depicted 

as green triangles, while the goal points (𝑥𝑔𝑜𝑎𝑙) are represented 

by purple squares. In the 6D scenario, red cup 1 denotes the start 

position and red cup 2 signifies the goal position. In all five 

scenarios, we need to find feasible paths for these robots to move 

from initial positions to goal positions while avoiding collisions 

with obstacles.  

We compare our approach (AMRRT) with other notable 

motion planning algorithms such as RRT, RRT-Connect, LM-

RRT [19], RRdT [26], and Batch-Informed RRT (BIT) [27]. The 

BIT algorithm employed a selection of 20 sampling points for a 

single batch. We implement these algorithms in Python using the 

same planning framework and test them on a computer with Intel 

i7-10300 CPU and 32 GB RAM. Each algorithm is executed 20 

times in one scenario to obtain reliable statistics. 

 

4.2 Experiment results 
After conducting a series of experiments for our proposed 

approach and the compared algorithms, we depict the 

relationship between cost values and the number of sampling 

nodes in Figure 7. Here the cost values are the sum of the 

distances of the points in the final solution. The average running 

time for different algorithms to obtain initial solutions are 

compared and summarized in Table 1. The success rates of 

obtaining initial solutions under diverse constraints for these 

algorithms are compared in Figure 8. In the following sections, 

we will provide a comprehensive analysis of the performance of 

the proposed approach across different experimental scenarios. 

 

(1) 2D scenarios with mass point 

In this study, we test three different types of 2D scenarios 

as shown in Fig. 6 (a), (b) and (c). Scenario 1 is an indoor 

environment where the prime robot must navigate through 

multiple rooms and obstacles to reach the target goal. Scenario 2 

illustrates a maze environment with numerous turns and dead 

ends. Scenario 3 is a noisy map with cluttered obstacles. The 

planning difficulty of these three scenarios increases according 

to their respective (α, β, ϵ)-expansiveness [28]. 

In Figure 7 (a), it is evident that the proposed AMRRT 

approach requires a higher number of samples to find a feasible 

solution compared to RRT and RRT-Connect algorithms in 

Scenario 1. However, the results presented in Table 1 support the 

notion that the multi-tree structure algorithms, including the 

LMRRT and AMRRT algorithms, require significantly less time 

for sampling valid points compared to RRT and RRT-Connect   

algorithms. Hence, despite the higher sampling point 

requirement, the multi-tree structure algorithm offers a distinct 

advantage in terms of planning time for simpler environments. 

Among the multi-tree structure algorithms, LMRRT algorithm 

exhibits the lowest valid sampling requirement and average 

running time. This is attributed to the pre-processing of the 

environment map in the LMRRT algorithm, which identifies 

critical path nodes that constitute the solution and uses them as 

nodes for subtree growth.  

Despite requiring fewer valid sampling points for 

successful planning, the success rate of LMRRT under the given 

constraints is comparatively less stable than that of the proposed 

AMRRT approach, as shown in Figure 8 (a). Furthermore, in 

complex congested environments, as illustrated in Figures 7 (b) 

and 7 (c), the AMRRT approach demonstrates a significant 

advantage in the number of required valid sampling points to 

obtain the initial solution and the average running time. As Fig. 

8 (c) shows, this advantage is more pronounced in more complex 

2D environments where RRT, RRT-connect and BIT algorithms 

cannot even obtain initial solutions, indicating the effectiveness 

of our information gain-based subtree generation and adaptive 

local subtree planning. Additionally, Figures 8 (b), (c), and (d) 

further highlight the superior stability of our approach compared 

to other algorithms. Notably, the information gain-based subtree 

generation in the proposed AMRRT approach eliminates the 

need for preprocessing the map environment and avoids over-

concentration on already fully explored regions, resulting in a 

higher success rate within limited time compared to other 

algorithms. 

 

(2) 4D scenario with robot’s rotating arm 

As shown in Fig. 6 (d), the environment of Scenario 4 

consists of narrow passages where the robot’s arm must rotate to 

meet the angle transformation requirement and the position of 

the robot should also satisfy the passing condition. 

Figure 7 (d) illustrates that the performance of the proposed 

AMRRT approach is between the RRT and RRT-Connect 

algorithms in terms of the number of valid samples required to 

find a feasible solution. Furthermore, Table 1 confirms that the 

AMRRT approach exhibits a lower time cost of sampling valid 

points compared to other algorithms. Figure 8 (d) demonstrates 

that multi-tree structure-based algorithms exhibit higher success 

rates compared to RRT, RRT-Connect, and BIT algorithms. 

Specifically, the proposed AMRRT approach performs the best 

among the multi-tree structure algorithms, indicating its adaptive 

nature and superior performance even in a 4D environment. In 

complex 4D environment, the AMRRT approach outperforms 

other algorithms in terms of sampling efficiency, planning 

efficiency and success rate. 

 

(3) 6D scenario with robot arm’s transport task 

In Scenario 5 (see Fig. 6 (e)), a robot arm with a single-

degree-of-freedom mechanical gripper need to start from the 

position of red cup 1, navigate through the complex table 

obstacles and the horizontal bar obstacles in the middle area, and 

reach the position of red cup 2. The clamping angle of the 

mechanical gripper is fixed.  

Figure 7 (e) shows that the proposed AMRRT approach 

only requires 4000 sampling points to construct the initial 

solution. Also, according to Table 1, AMRRT can find the 

sampling points that constitute the initial solution in the shortest 

time. Moreover, Figure 8 (e) demonstrates that AMRRT has the 

highest success rate among all compared algorithms. In contrast, 
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the RRT algorithm is less effective in the 6D scenario, likely due 

to its inefficient single-tree structure. The other multi-tree 

algorithms such as RRdT shows a slightly lower success rate 

than AMRRT. LMRRT is unable to find feasible solutions for the 

6D scenario, probably because it struggles to identify key points 

for subtree generation during preprocessing. In summary, the 

experimental findings highlight the superior performance of the 

proposed AMRRT approach in high-dimensional complex 

environment, further validating its adaptability and stability. 

 

(4) Realistic material pick-and-place scenario 

In order to validate the effectiveness of the AMRRT 

approach in real industrial applications, we test the performance 

of AMRRT in a material pick-and-place scenario as shown in 

Figure 9. The scenario includes a Jaka Zu3 robot arm equipped 

with a mechanical gripper, and two Realsense cameras for 

accurate object detection and positioning (two cameras are set on 

each side of the table, although only one is shown in the figure). 

In the material pick-and-place task, the robot arm will transfer 

the material block from one side of the baffle plate to the other 

side while avoiding the obstacles of the baffle and the conical 

barrel. We first create the simulation environment using the 

Klampt platform and implement the AMRRT approach for path 

planning on the physical robot arm. The successful trajectory 

planned by the AMRRT approach is also illustrated in Figure 9 

(b), demonstrating the capability of the proposed approach in a 

realistic industrial application. 

 

 
FIGURE 9: The realistic material pick-and-place scenario (a) 

and the major motions of the robot arm (b). The sequential 

pictures labeled with 1, 2, 3, and 4 correspond to the seeking, 

picking, moving, and placing actions in the pick-and-place task. 
 

5. CONCLUSION 
In this paper, we propose a robot motion planning approach 

based on adaptive multi-tree sampling to efficiently generate 

collision-free paths in highly constrained environments. Our 

approach leverages the exploration structure of the multi rapidly 

exploring random tree, combining the rapid exploration property 

of the RRT method and the global exploration property of the 

multi-tree structure. We develop an information gain-based 

subtree generation method utilizing the mean shift algorithm, 

which can select locations with higher information gain to 

generate subtrees to explore the environment more effectively. 

In addition, we develop an adaptive local subtree planning 

method that dynamically updates the sampling direction and step 

size based on local planning results, maximizing the likelihood 

of forming feasible trajectories in narrow passages. 

The results from computer simulation experiments 

demonstrate that the proposed approach outperforms other 

methods in complex environments, particularly in success rate of 

path planning and computational time to find initial solutions. 

The physical experiment also validates the effectiveness of our 

approach in realistic material pick-and-place scenario. Future 

work may involve further optimizing the algorithm’s 

computational efficiency while preserving its high-quality 

solutions and exploring the algorithm’s performance in more 

diverse and challenging scenarios, such as environments with 

moving obstacles. Our proposed approach offers promising 

solutions for adaptive robot motion planning in complex 

environments, and we hope our work will inspire the 

development of more advanced methods in this area. 
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