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Customer preferences are found to evolve over time and correlate
with geographical locations. Studying the spatiotemporal heteroge-
neity of customer preferences is crucial to engineering design as it
provides a dynamic perspective for understanding the trend of cus-
tomer preferences. However, existing choice models for demand
modeling do not take the spatiotemporal heterogeneity of customer
preferences into consideration. Learning-based spatiotemporal
data modeling methods usually require large-scale datasets for
model training, which are not applicable to small aggregated
data, such as the sale records of a product in several regions and
years. To fill this research gap, we propose a spatial panel model-
ing approach to investigate the spatiotemporal heterogeneity of
customer preferences. Product and regional attributes varying in
time are included as model inputs to support demand forecasting
in engineering design. With case studies using the dataset of
small SUVs and compact sedans in China’s automotive market,
we demonstrate that the spatial panel modeling approach outper-
forms other statistical spatiotemporal data models and non-para-
metric regression methods in goodness of fit and prediction
accuracy. We also illustrate a potential design application of the
proposed approach in a portfolio optimization of two vehicles
from the same producer. While the spatial panel modeling
approach exists in econometrics, applying this approach to
support engineering decisions by considering spatiotemporal het-
erogeneity and introducing engineering attributes in demand fore-
casting is the contribution of this work. Our paper is focused on
presenting the approach rather than the results per se.
[DOI: 10.1115/1.4065211]
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1 Introduction
Customer preference models support product design in many

aspects [1] as they can quantitatively characterize the interrelation-
ship between market demand, engineering design attributes, and
customer demographics. However, modeling customer preferences
is inherently difficult due to the challenges in modeling various
forms of heterogeneity in customer behaviors [2]. Different
approaches have been used to capture the heterogeneity under the
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discrete choice analysis (DCA) framework [3]. Nevertheless, none
of them takes the spatiotemporal2 heterogeneity of customer prefer-
ences into consideration. Customer preferences are found to evolve
over time and correlate with geographical locations [4]. Human
behaviors at one location can diffuse to adjacent locations that
share similar socioeconomic status [5]. A thorough understanding
of the spatiotemporal heterogeneity of customer preferences can
help designers create customized products and support companies
to develop localized marketing strategies.
In engineering design, researchers expect to investigate the spa-

tiotemporal heterogeneity of customer preferences to guide
product design with various methods. For example, time-series
analysis methods [6] have been used to extract product features
and predict emerging product design trends from longitudinal
online customer reviews and social media content. These methods
can achieve high accuracy of prediction, but they may not
provide enough insights into what factors influence these trends
to support design decision making. Learning-based spatiotemporal
data modeling methods such as long short-term memory networks
[7], gated recurrent unit networks [8], and graph neural networks
[9] are powerful in capturing non-linear features, but they usually
require large-scale datasets for model training (e.g., more than
10,000 samples). Network-based methods [10] can analyze and
model complex relationships based on a networked graph, where
nodes represent individual customers or products and links repre-
sent relationships between them. They are suitable for modeling
individual customer preferences when a large number of preference
records are available and the interrelationships between customers
are explicit. Thus, if only small-scale aggregated customer prefer-
ence data are available, the above-mentioned methods are not appli-
cable. Here, small-scale aggregated data refer to those customer
preference data collected in an aggregated way (i.e., a group of cus-
tomers’ preferences are collected, such as customers from a residen-
tial community rather than individuals) with limited size (often less
than a thousand samples) [11]. For example, the sale record of a
product in several regions and years is a typical kind of small-scale
aggregated data, and it is difficult to find explicit interrelationships
between regions like individual customers. Therefore, an approach
for modeling spatiotemporal heterogeneity of customer preferences
with small-scale aggregated data is needed.
In this study, we propose to employ spatial panel models [12] for

analyzing and understanding the spatiotemporal heterogeneity of
customer preferences in support of engineering design by consider-
ing the impact of geographical, social, and economic factors from
different regions in addition to those traditionally considered
product design attributes. Rooted in spatial econometrics and
regional science [13], spatial panel models are effective for model-
ing correlations between dependent variables and independent var-
iables in both space and time [14]. Although this method has been
applied in research on transportation mode choice modeling [15],
this is the first attempt to employ spatial panel models to support
engineering design.
The main contribution of our work is the introduction of spatial

panel models into the engineering design field for modeling
product demand as a function of engineering design attributes, cus-
tomer attributes, and regional attributes, as well as spatiotemporal
effects. In addition to our previous work [16], we examined the
effectiveness of this approach by thoroughly comparing it with
other statistical spatiotemporal data models and non-parametric
regression methods in case studies. Significant spatiotemporal
effects of customer preferences are captured in the case study,
and the better prediction accuracy of our approach also supports
the solving of a portfolio design optimization problem. These
results and insights can provide other researchers in the engineering
design community with more thoughts or inspirations about how to

model the influence of spatial factors, temporal factors, and their
interactions on customer choice/product demand. Note that as
regression models, although spatial panel models can explicitly
model the correlations between dependent variables and indepen-
dent variables when the size of the dataset is too small, these
models are likely to encounter the problem of underfitting. Also,
non-linear relationships between the variables cannot be captured
by linear regression models.

2 Review of Related Methods
Spatiotemporal data are data that relate to both space and time

and can be categorized into spatial panel data and point-referenced
data. The former refers to a cross section of observations on a set of
spatial units (e.g., cities, states, provinces) repeated over several
time periods, such as the recent 5-year population of the 48 contig-
uous states in the United States. The latter is characterized by a spe-
cific spatial position (e.g., latitude and longitude) and a timestamp,
such as the meteorological data recorded at different monitoring
stations.
Researchers have developed modeling approaches for different

types of spatiotemporal data. A typical class of models for spatial
panel data is the spatial panel model. Its theoretical foundation orig-
inates from three basic spatial interaction effects [14]. Endogenous
interaction effects measure how the dependent variable of one
spatial unit is jointly determined with that of neighboring units.
Exogenous interaction effects measure how the dependent variable
of a particular unit depends on the independent variables of other
units. Interaction effects among the error terms measure how the
unobserved factors in neighboring spatial units influence each
other. The spatial panel model has been used in the analysis of eco-
nomic activities, such as bicycle sharing demand modeling [17].
With limited parameters to estimate, the spatial panel model is
not difficult to implement. It typically requires a medium amount
of data (e.g., a thousand samples) for model training, and the inter-
pretability of its results is good.
Panel vector autoregression (PVAR) is a multivariate time-series

model used in panel data analysis. This model combines the vector
autoregression (VAR) model [18] with panel data. PVAR has been
utilized in capturing the spatiotemporal patterns of panel data. For
example, Xing and Ye [19] employed PVAR to model low-carbon
green transition, consumption upgrading, and industrial structure
change. Compared to spatial panel models, PVAR is slightly
more difficult to implement. PVAR needs more data for model
training since it includes lagged terms in regression. The results
of PVAR models are interpretable.
Unlike spatial panel models and PVAR, geographically weighted

regression (GWR) is a method for point-referenced spatial data,
which has been used in spatial analysis of transportation, such as
modeling urban travel demand [20]. GWR adopts a local strategy
to fit regression models at each geographic location based on its
neighbors within a specific bandwidth. GWR can work with
medium- to large-scale datasets (e.g., a thousand samples or
more), and its implementation is relatively easy. However, the
results of the GWR model are more difficult to interpret because
they involve a large number of coefficients to describe the localized
relationships, which requires the comparison and interpretation of
results in each spatial unit.
Geographically and temporally weighted regression (GTWR) is

an extension of GWR by incorporating temporal effects, which
can model both spatial and temporal heterogeneity. Shen et al.
[21] used GTWR to investigate the spatiotemporal influence of
land use and household properties on the demand for travel with
cars. Compared to GWR, GTWR is more complex as it accounts
for local effects in both space and time. GTWR can work with
medium- to large-scale datasets.
Compared to the parametric regression methods reviewed above,

Gaussian process regression (GPR) is a typical non-parametric
regression method, as it does not rely on a fixed mathematical

2The word “spatial” is a terminology extensively used in spatial economics and
regional science. It has a broader meaning than “geographic” as it can also describe
regions based on their social or economic relations beyond geographic borders.
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expression. Based on the Bayesian probability theory, GPR can
model and predict the relationship between independent and depen-
dent variables by using Gaussian processes to establish the proba-
bility distribution function between these variables. In the field of
customer analysis, GPR has been applied to predict the needs of
customers. For instance, Sun and Lu [22] applied GPR to model
bike-sharing demand, considering the influence of different land
use types. Compared to the parametric methods, GPR has fewer
requirements on the dataset, and it can provide estimates of the
uncertainty of predictions. However, GPR is difficult to implement
since it requires finding the optimal combination of hyperpara-
meters. The results of GPR are also less interpretable.
Based on the above reviews, we expect that the spatial panel

model will work better with small-scale data, and the obtained
results possess better interpretability.

3 A Spatial Panel Modeling Approach for Modeling
Heterogeneity of Customer Preferences
The proposed approach aims to extract insights from small-scale

spatiotemporal data—how aggregated customer preferences change
with space and time. Figure 1 illustrates a step-by-step procedure for
implementing the approach. In Step 1, data reflecting the spatiotem-
poral heterogeneity of customer preferences (e.g., sale records of a
product in multiple regions and years) and potential influencing
factors (e.g., product design attributes, customer demographics)
are collected and preprocessed. Descriptive analysis and visualiza-
tion of these data can help with selecting appropriate explanatory
variables in the subsequent modeling process.
In Step 2, spatial dependence tests (e.g., Lagrange multiplier

(LM) test [23], Hausman test [24]) are used to examine the
spatial dependence of collected data and provide clues for model
specification (e.g., choose between a spatial panel model or a
linear regression model, choose between a random effects model
and a fixed effects model). Specifically, the LM test is utilized to
examine the presence of spatial dependence within the data. If the
null hypothesis can be rejected, the spatial dependence exists, and
the spatial panel model can be chosen. Otherwise, the spatial
panel model does not need to be considered since no spatial depen-
dence is detected. The Hausman test is employed to determine
whether a fixed effects model or a random effects model is more sui-
table for the panel data. If the null hypothesis is rejected, the fixed
effects model is expected to perform better.
In Step 3, after obtaining the spatial dependence test results, the

modeling variables and model types can be specified. Typical
response variables (Y) could be the demand, sales, or subjective
rating of a specific product (e.g., VW Jetta) or product segment

(e.g., small SUV). The spatial weights matrix (W) is used to
describe the geographic, demographic, or socioeconomic distance
between spatial units. Explanatory variables (X) can include cus-
tomer demographics, regional characteristics, and product attri-
butes. Commonly used statistical analysis techniques for
identifying key attributes in customer preference modeling
include multicollinearity analysis, stepwise logistic regression,
and principal component analysis, as shown in Ref. [25]. Usually,
multicollinearity analysis can be first used to identify the correla-
tions between explanatory variables. By excluding those variables
with strong correlations, the regression results can be more reliable
and accurate. Then, principal component analysis is useful for
extracting the most influencing variables when a large number of
explanatory variables are available. Stepwise logistic regression
can be used to support the fine adjustment of explanatory variables
by iteratively adding or removing certain variables to the regression
model based on specific criteria, such as the Akaike information cri-
terion (AIC) or Bayesian information criterion (BIC).
A comprehensive static spatial panel model can be represented in

Eqs. (1) and (2) in Fig. 2. In practice, depending on the application
context, simplified versions of this model are more often used. For
example, the spatial autoregressive model (SAR, see Eq. (3)) only
considers the endogenous interaction effect among the dependent
variable by setting θ and ρ to zero, while the spatial error model
(SEM, see Eqs. (4) and (5)) only considers the interaction effect
between error terms by setting θ and λ to zero. When none of the
spatial dependence and space/time-specific effects are considered
according to the testing results in Step 2, θ, λ, ρ, μ, and ξ will all
be set to zero, and then a spatial panel model simply degenerates
into a linear regression model. After specifying the model types
and variables, the associated coefficients can be estimated by the
maximum likelihood or generalized moments [26], in which the
former method is more often used due to its better applicability
for different forms of spatial panel models.

Yt = λWYt + Xtβ + μ + ξ + εt (3)

Yt = Xtβ + μ + ξ + ut (4)

ut = ρWut + εt (5)

There are some other variations of spatial panel models, such as
the spatial Durbin model, spatial autoregressive confused (SAC)
model, and spatial lag of X (SLX) model [27]. In this study, we
investigate the use of SAR and SEM since they are the most funda-
mental models to characterize spatial dependence, which have been
used to investigate the spatial effects of economic and social activ-
ities. For example, Zhang et al. [28] employed SEM for the spatial
analysis in mass appraisal of commercial real estate. Qu and Lee
[29] demonstrated the use of SAR in the spatial dependence analy-
sis of adjacent school districts. However, few previous studies intro-
duce these models in modeling the spatiotemporal heterogeneity of
customer preferences. Thus, our work is a good demonstration of
the proposed approach in this field.
In Step 4, the model specifications may need to be adjusted iter-

atively until the models obtain sufficient explanatory power. The

Fig. 2 The full static spatial panel model

Fig. 1 A step-by-step procedure for understanding spatiotem-
poral heterogeneity of customer preferences in engineering
design
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explanatory power is commonly measured by R2, which quantifies
the percentage of variance in the dependent variable that is predict-
able from the independent variables. Based on this metric, we can
refine the model by adding or removing explanatory variables and
choosing between different models (e.g., SAR or SEM) until a
model with better explanatory power is obtained. A typical applica-
tion of the built models is demand forecasting in engineering
design, especially for investigating how product design change
can influence its market demand. Equations (6) and (7) are used
to make predictions on spatial panel data for fixed effects SAR
model and SEM model, respectively, according to Baltagi et al.
[30] and Elhorst’s work [31]. Here, T + C is a future time-period
point, λ̂ is the estimated spatial autoregression coefficient, β̂GMM
is the estimated coefficients using the generalized method of
moments (GMM), and μ̂ is the estimated spatial-specific effect.

ŷT+C = (IN − λ̂W)−1(XT+C β̂GMM + μ̂) (6)

ŷT+C = XT+C β̂GMM + μ̂ (7)

Although the above-mentioned methods are not new, as they
originate from various areas such as spatial econometrics and
regional science, our work contributes to introducing, combining,
and tailoring these methods into the engineering design field in a
systematic way. It offers a comprehensive workflow consisting of
data preparation, spatial effect detection, and model selection, train-
ing, and prediction for modeling spatiotemporal heterogeneity of
customer preferences with small-scale aggregated data.

4 A Case Study of Passenger Vehicles
To demonstrate the proposed approach, we present a case study

employing the data from a recognized, reputable survey represent-
ing China’s automotive market [32]. This survey data consists of
about 50,000 new car buyers’ responses and purchase history cov-
ering about 400 different vehicle models in China’s market each
year from 2012 to 2016. Respondents were asked to list the cars
they purchased with their residential information and the purchase
time. The vehicle’s attributes, such as engine power and fuel con-
sumption, are reported by customers in the survey and verified by
the data company.
Our focus in this study is the small SUV segment (i.e., mini and

compact SUVs), as the demand for small SUVs has been rising
rapidly and increasingly, and affluent Chinese buyers opt for
more spacious vehicles [33]. According to the survey data, 14.8%
of the respondents purchased a small SUV in 2012, and this percent-
age increased to 21.6% in 2016. Our analysis is performed by
grouping data samples in a given time interval, called wave. In
each year, the survey was collected every four months; thus, we
have three-wave data for each year and 15-wave data for 5 years.
We considered 27 provinces in mainland China as the basic
spatial units (i.e., regions) in this study, as these provinces have
complete 15-wave data of small SUV sales. In addition to the
survey data, we also collected regional statistics (demographics

and socioeconomics) of these provinces from the National Bureau
of Statistics of China [34].

4.1 Descriptive Analysis of the Key Variables. Based on our
prior research on customer preferences in vehicle consideration and
choice [32], we identified three vehicle attributes (price, power, and
fuel consumption), one customer attribute (monthly household
income) and chose two regional attributes that have been broadly
studied in automotive market research [35] (GDP per capita and
length of paved roads per capita) to study the engineering, demo-
graphic and regional effects on small SUV sales. The vehicle attri-
butes and customer attributes are taken from the survey [32], while
the regional attributes are obtained from Ref. [34]. Note that our
modeling results could be biased by not including the omitted var-
iables that are critical for modeling customer preferences, which is a
research topic in itself [36]. The main purpose of this work is to
demonstrate the approach of integrating spatiotemporal heterogene-
ity into demand modeling rather than the results per se.
Table 1 provides the descriptive statistics of these attributes at the

province level. The results indicate that the mean values on sales of
small SUVs, GDP per capita, and length of paved roads per capita
of each province in 2016 are larger than those in 2012, while the
mean values on price, power, fuel consumption, and household
income in 2016 are smaller than those in 2012. These results may
imply that small SUVs are increasingly popular as they become
more affordable, and the small SUVs offered in China’s auto
market tend to have lower power and fuel consumption to match
the decreased prices. The decreased monthly household income of
customer profiles implies that more customers with relatively lower
incomes entered the market of small SUVs. The increased GDP per
capita and the length of paved roads per capita indicate the growing
economy and improved infrastructures in China in those 5 years.
Figure 3 presents the spatial distributions of selected variables in

2016. These graphs provide an intuitive reflection of the relation-
ship between the sales of small SUVs and the selected explanatory
variables. For example, the sales of small SUVs seem to positively
correlate with income and GDP per capita and negatively correlate
with price. We expect to obtain consistent results but in a quantita-
tive way from the spatial panel models.

4.2 Spatial Dependence Tests. Spatial dependence tests are
used to examine the existence of spatial effects and provide clues
for identifying model specifications. Table 2 presents the results
of two tests: LMH and Hausman test with their respective null
hypotheses (H0). Detailed procedures for running these tests can
be found in Ref. [23]. As shown in Table 2, the null hypotheses
of both tests are rejected at the 5% level of significance. The
result of the LMH test suggests that at least one of the spatial auto-
regressive coefficient (λ) and the variance of spatial-specific effects
(σ2μ) is not zero. It implies the existence of the spatial effect of the
dependent variable, i.e., the sales of small SUVs in China. The
result of the Hausman test indicates that the assumption of

Table 1 Descriptive statistics of the key variables (province-level) between 2012 and 2016

2012 2016

Mean (SD) Min Max Mean (SD) Min Max

Sale of small SUV (units)*** 102.9 (85.3) 9 351 421.8 (350.2) 15 1119
Price (10,000 RMB)*** 23.6 (1.2) 20.6 26.6 15.2 (1.5) 12.9 18.1
Power (BHP)*** 165 (5.8) 152.2 180.5 150.4 (4.2) 141.9 158.9
Fuel consumption (liter/100 km)*** 11.1 (0.5) 10.3 12.5 9.1 (0.6) 8.4 10.8
Monthly household income (1000 RMB). 15.7 (4.2) 9.2 26.8 13.7 (3.9) 8.0 23.3
GDP per capita (10,000 RMB)* 4.3 (1.9) 1.9 9.1 5.7 (2.6) 2.8 11.8
Length of paved roads per capita (km/10,000 residents) 2.4 (1.1) 0.7 4.6 2.8 (1.1) 1.1 5.6

Note: Standard deviations are in parentheses, and BHP stands for Brake Horsepower. * represents the significance of difference in comparing the mean values
of 2012 and 2016 using a Welch two-sample t test (α = 0.05): p< .10; *p< .05; **p< .01; ***p< 0.001.
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random effects is not supported by the data, and fixed effects
models should perform better than random effects models.

4.3 Model Specifications. Upon the completion of the spatial
dependence tests, spatial panel models can be built with detailed
specifications as follows:

• Response variable (Y): small SUV sales in 27 provinces of
China in each wave from 2012 to 2016. Due to the high corre-
lation (r = 0.931) between the number of the surveyed respon-
dents and the number of new vehicle registrations over
multiple years in each province of China, the survey data
were used as the surrogate of the actual sales numbers in
regression analysis.

• Spatial weights matrix (W): binary geographical adjacency
matrix based on purely geographical considerations. For ease
of interpretation, W is normalized such that the elements of
each row sum to unity [14].

• Explanatory variables (X): the three vehicle attributes, one cus-
tomer attribute, and two regional attributes presented in Sec.
4.1.

4.4 Settings of Other Comparative Models. To demonstrate
the effectiveness of the proposed approach, we build four other spa-
tiotemporal data models as a comparison. Equation (8) shows the
PVAR model:

Yi,t =Φi,t−1Yi,t−1 +Ψi,t−1Xi,t−1 + ϵi,t (8)

here, Yi,t and Yi,t−1 are the ith observation on the dependent variable
at t/ t − 1 moment. Xi,t−1 is the ith observation on the independent
variable at t − 1 moment. The coefficient matrices to be estimated,
denoted as Φi,t−1 and Ψi,t−1, are both N × N matrices. Based on the
limited size of the available dataset and the obtained AIC results, we
only consider the impact of the past period’s data on the current
period’s data (i.e., the lag order is set to 1), ignoring the fixed
effects of individual spatial units. Unit root tests [37] are then per-
formed to examine the data stationarity, and Granger causality tests
[38] are utilized to assess whether explanatory variables have a
causal impact on response variables. Subsequently, after fitting
the model, stability and co-integration tests are carried out to eval-
uate the effectiveness of the model.

Fig. 3 The spatial distribution of certain model variables in 2016: (a) sale of small SUVs, (b) price, (c) monthly household income,
and (d ) GDP per capita (white areas represent missing data)

Table 2 Results of spatial dependence tests

Test H0 Statistic p value

LMH Spatial autoregressive coefficient (λ) and variance of spatial-specific effects (σ2μ) are both zero 747.80 <0.001
Hausman test Random effects assumption is supported by the data 20.61 <0.001

Journal of Computing and Information Science in Engineering AUGUST 2024, Vol. 24 / 084503-5

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/doi/10.1115/1.4065211/7328667/jcise_24_8_084503.pdf by Shanghai Jiaotong U
niversity user on 17 April 2024



Equation (9) shows the GWR model:

yi = βi0 (ui, vi) + Σ p−1
k=1 βik (ui, vi)xik + εi (9)

here, yi is the dependent variable, βi0 (ui, vi) is the constant term, and
βik (ui, vi) is the regression coefficient. xik is the independent vari-
able, and p is the total number of coefficients to be estimated.
When applying this model, we first obtain the latitude and longitude
of the capital city of each province as their spatial coordinates. We
include time as an additional explanatory variable in the model
since GWR itself does not consider the time effects. We then
select the optimal bandwidth based on the AIC and use the Gaussian
function to determine the weight. For the GTWR model (see Eq.
(10)), its modeling process is similar to GWR since it is an exten-
sion of GWR by adding time effects.

yi = βi0 (ui, vi, ti) + Σ p−1
k=1 βik (ui, vi, ti)xik + εi (10)

The GPRmodel assumes that the output y follows a Gaussian dis-
tribution, i.e., y ∼ N (μ(x), k(x, x′)), where μ(x) is the mean
function, and k(x, x′) is the covariance function. We assume a
prior mean of 0, and the prior variance is specified by the kernel
function. In this study, we evaluate the impact of various kernels
on the model fit (R-squared values) and prediction performance
(root-mean-square error (RMSE)) of GPR. Our results show
that the RMSE and R-squared of the GPR model with the radial
basis function (RBF) kernel are 24.87 and −27.25, 11.48 and
−5.02 with the Matérn kernel, and 3.06 and 0.57 with the rational
quadratic kernel. The White kernel, on its own, exhibited an
RMSE of 24.86 and an R-squared of −27.25. When combined
with the DotProduct kernel, the performance was significantly
improved, showing a reduced RMSE of 2.41 and an increased
R-squared of 0.62. Thus, we ultimately select the best-performing
kernel function, i.e., the sum of DotProduct and WhiteKernel. We
then optimize the hyperparameters, such as the σ0 (i.e., Gaussian
noise variance, used to describe the noise level in GPR) of Dot
product and noise_level of WhiteKernel, by maximizing the log
marginal likelihood (LML).

5 Results
5.1 Estimated Spatial Parameters and Coefficients of

Explanatory Variables. Table 3 presents the summary of the esti-
mated coefficients, goodness of fit, and prediction accuracy of four
different spatial panel models, two linear regression models, and
PVAR, GWR, GTWR, and GPR models as comparisons. The
experiment has been repeated multiple times, and the averaged
results are reported. Here, the response variable and explanatory
variables are transformed with natural logarithms, which is a

common treatment in spatial regression analysis for smoothing
data and getting results with practical meanings [39]. Depending
on whether the spatial-specific effects (μ) are treated as random
effects or fixed effects in the estimation, the random effects
model and the fixed effect model are achieved, respectively. In
SAR models (Eq. (3)), the dependence of the response variables
in different regions is estimated and denoted by the spatial autore-
gressive coefficient (λ). In SEM models (Eqs. (4) and (5)), the
dependence of the error terms in different regions is estimated
instead and denoted by the spatial autocorrelation coefficient (ρ).
In both SAR and SEM models, in addition to the results shown in
Table 3, spatial-specific effects (μ) and time-period-specific
effects (ξ) are also estimated (see details in Sec. 5.2). The linear
regression model is the simplest model with neither spatial depen-
dence nor space/time-specific effects. A linear regression model
with fixed effects is an extension to the linear model by adding
spatial (μ) or temporal (ξ) specific effects but no spatial dependence
effect (here, we report the results of the linear model with spatial-
specific effects, which has the best goodness of fit).
From Table 3, we can observe that the R2 of these models sug-

gests that fixed effects models (R2 = 0.84, 0.83 for SAR and
SEM, respectively) perform better than random effects models
(R2 = −0.30, 0.35 for SAR and SEM, respectively).3 This result
is consistent with the implication of model performance obtained
from the spatial dependence test in Sec. 4.2. In addition, the R2 of
the linear regression model and the linear regression model with
fixed effects are lower (R2 = 0.52, 0.56), which indicates that the
lack of the spatial dependence effects (e.g., λ, ρ) seems to weaken
the model’s goodness of fit. Furthermore, when using the first
14-wave data to train the model and the last wave data for
testing, the RMSEs of fixed effects SAR model, SEM model, and
linear model with fixed effects are 0.47, 0.48, and 0.47, respec-
tively, while the RMSE of linear regression model without any spa-
tiotemporal effects is 5.60. Thus, among the models that exhibited a
positive R2, the linear regression model is the least accurate one in
predicting the response variable due to its lack of consideration of
spatial dependence effects and spatial/temporal-specific effects.
The four columns on the right side of Table 3 show the estimation

results of other three parametric spatiotemporal data models
(PVAR, GWR, and GTWR) and one non-parametric model
(GPR). As we can see, the GWR and PVARmodels have better per-
formance in the goodness of fit (R2 = 0.84, 0.79 for GWR and
PVAR, respectively) compared to the GTWR (R2 = 0.71) and
GPR (R2 = 0.62) models. When using the first 14-wave data to
train the models and the last wave data for testing, the RMSE of

Table 3 Estimated coefficients, goodness of fitness, and prediction accuracy of 10 different models in small SUV study

Linear model
Linear model with

fixed effects

Random effects spatial
panel models

Fixed effects spatial
panel models

PVAR GWR GTWR GPRSAR SEM SAR SEM

λ 0.21*** 0.18**
ρ 0.14* 0.11.

Price (β1) −2.53*** −0.86** −0.91** −1.18*** −0.59* −0.75* −1.01 −0.49 −1.59 \
Power (β2) −0.22 1.21. 1.12. 1.39* 0.89 1.08. 1.29 0.78 2.01 \
Fuel Consump. (β3) −0.41 −1.48** −1.69*** −2.05*** −1.26* −1.49** −1.18 0.11 −2.51 \
House. Income (β4) 1.20*** 0.19 0.21 0.2 0.16 0.16 0.27 0.31 0.67 \
Length_Roads (β5) −0.33* 2.14*** 0.55 0.41 1.91*** 1.94*** 0.21 1.22 0.59 \
GDP per capita (β6) 1.31* 1.89*** 1.25*** 1.63*** 1.57*** 2.03*** 0.33 0.73 0.94 \

R2 0.52 0.56 −0.30 0.35 0.84 0.83 0.79 0.84 0.71 0.62
RMSE 5.60 0.47 4.07 0.85 0.47 0.48 2.16 2.33 2.52 2.41

Note: λ: spatial autoregressive coefficient; ρ, spatial autocorrelation coefficient; RSME, root-mean-square error. Since GPR is a non-parametric regression
model, there are no estimated coefficients. p< .10; *p< .05; **p< .01; ***p< 0.001.

3R2 can be negative if the regression result is even worse than using the mean value
of the data samples as the predictions.
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the PVAR, GWR, GTWR, and GPR models are 2.16, 2.33, 2.52,
and 2.41, respectively. These values are relatively close to each
other, but all of them are much larger than the RMSE of spatial
panel models, reflecting lower prediction accuracies. In addition,
none of the estimated coefficients in these models are significant,
which provides limited interpretability to the influencing factors
on the spatiotemporal heterogeneity of customer preferences. One
possible reason is that since PVAR, GWR, and GTWR involve
too many coefficients for estimation, such as the lagged terms in
PVAR and the varying coefficients for every geographic location
in GWR and GTWR, they may not work well in our context with
a small training dataset. There is a risk of underfitting when the
coefficients to estimate are relatively large compared to the avail-
able data samples, which may also lead to poor prediction perfor-
mance. For GPR, its hyperparameters may be not sufficiently
optimized due to the limited size of the dataset and noise or outliers
in the data, which results in poor performance in prediction. There-
fore, we only present and discuss the results and applications of
spatial panel models in the following sections.
The positive spatial autoregressive coefficient (λ = 0.18, p <

.01) obtained from the fixed effects SAR model (see Eq. (3)) sug-
gests that a region with higher small SUV sales is likely adjacent
to several regions with high small SUV sales. This result implies
the effect of geographical proximity on product sales. The spatial
autocorrelation coefficient (ρ = 0.11, p > .05) estimated from the
fixed effect SEM model (see Eqs. (4) and (5)) implies that the
unobservable factors (i.e., other explanatory variables not included
in our models) in one region have insignificant correlations with
those in adjacent regions.
When examining the estimated coefficients (β) of explanatory

variables in the fixed effects SEM model, we find that at an aggre-
gated market level, the increases of price (β1 = −0.75, p < .05) and
fuel consumption (β3 = −1.49, p < .01) tend to have a negative
impact on sales of small SUVs. The effects of power (β2 =
1.08, p > .05) and monthly household income of customers (β4 =
0.16, p > .05) are not significant. Among the two regional attri-
butes, length of paved roads per capita (β5 = 1.94, p < 0.001)
and GDP per capita (β6 = 2.03, p < 0.001) both have significant
positive influences on the sales of small SUVs. The estimated coef-
ficients of price and GDP per capita in spatial panel models are
consistent with the observations from the choropleth map shown
in Fig. 3. In addition, the estimated coefficients in the fixed
effects SAR model are similar to those in the fixed effects SEM
model.

5.2 Estimated Spatial-Specific Effects and Time-Period-
Specific Effects. Spatial-specific effect controls for all time-
invariant variables contributing to the response variable, which
reflects the inherent characteristics of a particular region. Figure 4
presents the estimated spatial-specific effects obtained from the
fixed effects SEM model (see Table 4 for the values). As shown
in Fig. 4, the blue regions exhibit negative spatial-specific effects.
This suggests that these regions have some unobserved factors
that weakly influence their small SUV sales. This may be due to rel-
atively lower levels of socioeconomic development in these prov-
inces (Xinjiang (μ = −1.52) and Ningxia (μ = −2.05)). By
contrast, economically developed areas such as Beijing (μ= 0.33)
and Shanghai (μ= 0.95) have positive spatial-specific effects (red
regions), which suggest that these regions have certain factors
that strongly influence their respective small SUV sales. It is also
interesting to see that Henan (μ= 1.55) and Sichuan (μ= 1.35)
have the highest estimated spatial-specific effects, even higher
than Beijing and Shanghai, although these two provinces are less
economically developed. Possible factors contributing to this
result include market saturation, economic growth rate, and
market capacity. Compared to Beijing and Shanghai, the market
of small SUVs is far away from saturation in provinces like
Henan and Sichuan. The higher economic growth rates and larger
populations in Henan and Sichuan may lead to a much greater

demand for small SUVs. In addition, Henan and Sichuan contain
a large number of rural areas that were experiencing increased
wealth. For many customers there, a small SUVmight be a practical
choice for their first vehicle due to its large space, good passability,
and affordable price. These results imply that when changing the
attributes of a vehicle to the same extent, the influence on vehicle
sales in different regions can be different. Traditional pricing strat-
egies may not be effective in regions with negative space-specific
effects, and car companies may want to devise more customized
marketing strategies to attract customers with unique preferences
in those regions.
Time-period-specific effects control for all space-invariant vari-

ables contributing to the response variable (i.e., the sales), which
reflects the regional characteristic in a particular time period.
Table 5 presents the estimated time-period-specific effects obtained
from thefixed effects SEMmodel (seeEqs. (4) and (5)). It is observed
that most time-period-specific effects (ξ) are negative before 2015
but become all positive afterward. This is probably due to the imple-
mentation of certain nationwide incentives starting from2015,which
greatly stimulated the sales of small SUVs in China. For example,
China reduced the vehicle purchase tax from 10% to 5% for small
passenger cars (engine displacement≤ 1.6 liters) in 2015 [40].

5.3 Validation Test. To further validate our approach, we
conduct another case study by employing the survey data men-
tioned in Sec. 4 but focusing on a different market segment,
compact sedan. The spatial panel modeling approach and other
comparative methods are tested with the same data analysis and
modeling procedures as described in Sec. 4. The tests have been
repeated multiple times, and averaged results are summarized in
Table 6. From Table 6, we can find that the fixed effect model of
SAR still performs the best (R2 = 0.86, RMSE = 0.40). Although

Table 4 Estimated spatial-specific effects (μ)

Province (i) μi Province (i) μi

Anhui −0.49 Jilin −0.01
Beijing 0.33 Liaoning −0.14
Chongqing 0.39 Inner Mongolia −1.36
Fujian −0.10 Ningxia −2.05
Gansu −0.50 Shandong 0.16
Guangdong 0.83 Shanghai 0.95
Guangxi −0.29 Shaanxi 1.00
Hebei 1.03 Shanxi −0.11
Heilongjiang −0.77 Sichuan 1.35
Henan 1.55 Tianjin −1.04
Hubei −0.16 Xinjiang −1.52
Hunan 0.51 Yunnan 0.67
Jiangsu 0.01 Zhejiang 0.29
Jiangxi −0.52 — —

Fig. 4 Spatial-specific effects obtained from the fixed effects
SEM model (dark gray color represents missing of data)
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PVAR and GWR achieve similar goodness of fit (R2 = 0.86), their
prediction accuracy (RMSE = 2.03, 1.82) is much poorer. These
results provide more evidence for the effectiveness of our approach.

6 Application in Vehicle Portfolio Design Optimization
Problem
In this section, we demonstrate the application of the proposed

approach to a hypothetical vehicle portfolio design optimization
problem. Suppose an auto company has two car models from the
same segment, how can the designer(s) optimally adjust a power-
train design attribute (e.g., 0–60 MPH acceleration time) of the
two models such that their overall profit is maximized across all
regions? Fig. 5 shows the formulation of this enterprise-driven
(i.e., profit maximization) portfolio design problem. In the simu-
lated scenario, and for the purpose of demonstration, the interaction
between the sales of the two car models is ignored for simplicity.
Here, we take VW FAW Sagitar and Bora as examples of two car
models in the optimization because they have complete sales
records in the 21 provinces of China from 2012 to 2016. By
fitting a spatial error model (SEM) for the sales of Sagitar and
Bora, respectively, the influence of three car attributes, one cus-
tomer attribute, and two regional attributes aforementioned in
Secs. 3 and 4, along with their associated spatial-specific effects,
can be estimated. The demand functions are then constructed

Table 5 Estimated time-period-specific effects (ξ)

Time period (t) ξt Time period (t) ξt

2012-1 −0.43 2014-3 −0.03
2012-2 −0.34 2015-1 0.21
2012-3 −0.86 2015-2 0.33
2013-1 −0.45 2015-3 0.14
2013-2 −0.16 2016-1 0.62
2013-3 −0.06 2016-2 0.52
2014-1 0.02 2016-3 0.56
2014-2 −0.07 — —

Table 6 Estimated coefficients, goodness of fitness, and prediction accuracy of 10 different models in compact sedan study

Linear
model

Linear model with fixed
effects

Random effects spatial
panel models

Fixed effects spatial
panel models

PVAR GWR GTWR GPRSAR SEM SAR SEM

λ 0.37*** 0.36**
ρ 0.41*** 0.39***

Price (β1) −0.67 0.12 0.40 0.66. 0.41 0.67. −0.18 −0.27 −0.28 \
Power (β2) −2.45 −2.43* −2.41* −1.84. −2.68* −2.15* 1.19 −2.40 −3.68 \
Fuel Consump. (β3) −3.23*** −1.33* −1.39** −1.91*** −1.07* −1.55** −0.23 −1.61 −2.71 \
House. Income (β4) 1.36*** −0.06 0.07 0.11 −0.03 0.01 0.26 0.48 1.14 \
Length_Roads (β5) −0.25* 1.32** 0.28 −0.09 0.79. 0.44 −0.11 2.45 −0.32 \
GDP per capita (β6) 1.15*** 1.23** 0.87** 1.46*** 0.81* 1.53*** 0.33* −1.32 1.24 \

R2 0.43 0.26 −3.41 0.34 0.86 0.83 0.86 0.86 0.66 0.85
RMSE 2.96 0.42 4.82 0.87 0.40 0.43 2.03 1.82 3.18 2.11

Note: λ: spatial autoregressive coefficient; ρ: spatial autocorrelation coefficient; RSME: root-mean-square error. Since GPR is a non-parametric regression
model, there are no estimated coefficients. p< .10; *p< .05; **p< .01; ***p< 0.001.

Fig. 5 Formulation for profit maximization-based design problem
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using these estimated coefficients (β1, β2, . . . ) and the formula in
Eq. (7). Note in Eq. (7), time fixed effects are not included,
which is a common treatment in current spatial economics literature
[31]. To make any assumptions on time fixed effects in predictions,
one needs to forecast factors such as the national macro-economic
situation, change of government regulations, market sentiment,
etc., in a future period, which is beyond the scope of this tech
brief. As shown in Eq. (11) of Fig. 5, the demand (Q) now is a
linear function of price, fuel consumption, and other modeled attri-
butes and is unique to each province due to the variances in regional
attributes and spatial-specific effects (μ). Fuel consumption is a
function of the design variable x (0–60 MPH acceleration time)
based on the empirical engineering model used in Ref. [41]. To
match with the real vehicle performance [42] as much as possible,
we added a constant a to this function (a = 110 for Sagitar and 150
for Bora).
Equation (12) in Fig. 5 is a simulated cost function, including the

fixed cost Cfixed (constant), and the variable cost Q(x) · v(x) depend-
ing on both demand and the design variable. We assume the fixed
cost is 18% of the average revenue per wave for Sagitar (8.46
million RMB) and Bora (5.04 million RMB). As for the variable
cost coefficient function v(x), we adopted the cost model used in
Ref. [41] and added a constant b to differentiate the cost of
Sagitar (b = 2.43) and Bora (b = 0.76) and match with their real
cost [42] as much as possible.
In this optimization problem, we consider price as a constant in

predictions, which is equal to the average price in the predicted
time period (i.e., 2016 wave 3). The purpose of this treatment
is to examine how a lower-level engineering design variable (0–
60 MPH acceleration time) can influence the sales and profit of
two vehicles from the same segment considering regional differ-
ences by excluding the impact of price (the pricing strategy
could be very complicated in a real market). In addition, to quan-
tify the relationship between power and acceleration time, we
fitted a linear model using the vehicle website data [42], and
the resulting model is power = 310−16.77 ∗ accerlation time for
Sagitar with a R2 = 0.877. The same approach was applied to
Bora.
Under these settings and assumptions, Table 7 provides the opti-

mization results. It can be observed that the optimized 0–60 MPH
acceleration time of Sagitar (9.18 s) and Bora (10.68 s) are
smaller than the market data (9.70 s, 11.70 s) in 2016 wave 3,
and the overall profit using the optimized design variable is larger
than the profit calculated by using the market data [42]. These
results demonstrate the need for considering spatiotemporal hetero-
geneity of customer preferences in product family design and the
capability of our approach.

7 Conclusion
We introduce the spatial panel modeling approach into the engi-

neering design field for capturing the spatiotemporal heterogeneity
of customer preferences. Our approach provides a systematic and
comprehensive workflow consisting of data preparation, spatial
effect detection, and model selection, training, and prediction for
modeling spatiotemporal heterogeneity of customer preferences
with small-scale aggregated data. Our study shows that spatial
panel models can quantify the influence of product attributes, cus-
tomer demographics, and regional characteristics on aggregate

customer choices. Their model fitting performance and prediction
accuracy are found to outperform other parametric or non-
parametric spatiotemporal data models, such as PVAR, GWR,
GTWR, and GPR. The effectiveness of our approach is also demon-
strated by its implementation in a portfolio design optimization
problem.
Although the linear regression models may provide similar

results on selected explanatory variables when modeling spatiotem-
poral heterogeneity of customer preferences, one critical advantage
of spatial panel models is that they can model and reveal the spatial
dependence between dependent/independent variables in various
regions, which allows us to capture how certain customer prefer-
ences diffuse spatially. Furthermore, spatial panel models enable
the assessment of the time-period-specific effects, which reveals
the influence of space-invariant factors on the temporal change of
customer preferences.
The knowledge and insights gained from our work also have

implications for engineering design and industry practice. These
insights allow vehicle manufacturers to develop customized prod-
ucts and marketing strategies for different regions to improve the
market share in a specific region. For example, we find high fuel
consumption may reduce the sales of small SUVs; thus, car compa-
nies may pay more attention to fuel economy in the development
and marketing of small SUVs, especially in the regions with
higher GDP growth rates, as more sales are expected in these
regions. In addition, the capability of predicting demand or
market share across different spatial regions can directly assist
localized product development and product family design over mul-
tiple market regions. It can also support the study of the spatial dif-
fusion patterns of product designs, e.g., how the launch of a new
design or a design improvement to existing products in one
region influences customers’ choice behaviors in neighboring
regions.
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Nomenclature
y = dependent variables observed in a spatial unit
x = independent variables observed in a spatial unit
K = number of explanatory variables
N = number of spatial units
T = number of time periods

Table 7 Optimization results

0–60 MPH acceleration time (s) Overall profit (million RMB)

Optimized result Market data Optimized result Market data

Sagitar 9.18 9.70 31.51 31.42
Bora 10.68 11.70 109.35 109.28
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W = A nonnegative N × N spatial weights matrix
Xt = NT × K matrix of exogenous explanatory variables
ut = error term
Yt = NT × 1 vector consisting of T observations on the

dependent variable for every space units in the sample
Wut = interaction effects among the disturbance terms of

different units
WXt = exogenous interaction effects term
WYt = endogenous interaction effect term

λ = spatial autoregressive coefficient
ρ = spatial autocorrelation coefficient
ε = vector of disturbance term
μ = spatial-specific effects
ξ = time-period-specific effects
γi = individual-specific unobserved fixed effects matrix

β, θ = associated K × 1 vectors with unknown parameters to
be estimated

Φi,k, Ψi,j = N × N coefficient matrices
(ui, vi) = geographic center coordinates of the sample spatial

unit
βi0 (ui, vi) = constant term estimate for the i th sample
βik (ui, vi) = regression coefficient for the k th independent variable

of the i th sample
Q(x) = demand, a linear function of price, fuel consumption

and other modeled attributes
v(x) = variable cost coefficient function

Cfixed = fixed cost
a, b = constants different between Sagitar and Bora
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