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A B S T R A C T   

Efficient motion planning is essential for robots to operate properly and safely. Traditional sampling-based 
planning algorithms have been extensively investigated, but they still often struggle in highly constrained en-
vironments. To address the issue, this paper introduces an Adaptive Multi-Rapidly-exploring Random Trees 
(AMRRT*) approach. The core idea is to adaptively improve the subtree generation, selection, and planning 
within the multi-tree sampling structure so that the configuration space can be explored more efficiently. During 
subtree generation, an information gain-based method is proposed to select appropriate locations for generating 
subtrees, minimizing sampling in areas that have been relatively fully explored. For subtree selection, the upper- 
confidence bound (δ) method is leveraged to balance global exploration and local exploitation. Additionally, a 
dynamic subtree planning method is developed to update the sampling direction and step size to increase the 
possibility of forming feasible paths. The theoretical proofs of the probabilistic completeness and asymptotic 
optimality for the AMRRT* approach are provided. To validate its effectiveness, we conduct a series of experi-
ments against the state-of-the-art motion planning algorithms within 2D to 6D robotic configuration space. The 
results demonstrate AMRRT*’s superior performance on key metrics including computational efficiency and 
success rate, suggesting its promising potential in addressing complex motion planning challenges.   

1. Introduction 

Robots are redefining various aspects of production processes 
ranging from smart assembly, material transportation, to patrolling and 
inspection (Evjemo et al., 2020; Jan et al., 2023). As the working 
environment becomes more complex, the potential for robots to 
encounter different obstacles, such as raw materials, other robots and 
equipment, or even human workers, also increases. Collisions between 
robots and these obstacles not only bring equipment damage and pose 
threats to human operators, they can also create a cascade effect that 
disrupts production pace, derails production schedule leading to higher 
manufacturing cost (Inkulu et al., 2022). Therefore, effective motion 
planning methods are crucial for robots to work safely and efficiently in 
complex environments. 

Motion planning is fundamentally a computational task of deter-
mining paths that allow robots to move from a starting position to a 
target destination under physical constraints while avoiding collisions 
with obstacles. Robots usually operate in a distinct space compared to 
humans, known as the configuration space (C-space) (Lozano-Pérez & 
Wesley, 1979). The C-space represents the set of all potential 

configurations, characterized by a given degree of freedom for the robot. 
While additional joints provide robots increased flexibility, they also 
introduce greater computational complexity due to the exponential 
relationship between the complexity of the C-space and the robot’s de-
grees of freedom, which is often referred to as the curse of 
dimensionality. 

Sampling-based motion planning algorithms (SBPs) tackle this 
challenge by employing a stochastic sampling strategy. Instead of 
explicitly constructing the intractable high-dimensional C-space, SBPs 
progressively construct either a roadmap or a tree by connecting valid C- 
space samples (Elbanhawi & Simic, 2014; Liang & Zhao, 2023). Road-
map represents the graph of feasible paths in the C-space, whereas tree is 
the branching structure grown from an initial position. Theoretically, 
SBPs can guarantee probabilistic completeness (Karaman & Frazzoli, 
2011), signifying that given an infinite number of sample points, a so-
lution can be discovered with a certain probability, if it exists. Further 
theoretical advancements have demonstrated the asymptotic optimality 
of SBPs (Gammell & Strub, 2021), ensuring that these algorithms will 
find a solution that is close to the optimal one as the number of samples 
increases. 
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Although SBPs own the advantages mentioned above, their running 
time is significantly affected by the C-space complexity. Higher spatial 
complexity results in longer running time, making it challenging for 
SBPs to handle highly constrained environments, where generating valid 
samples and establishing effective connections in the search space is 
extremely difficult. Fig. 1 illustrates an example of the motion planning 
for a four-degree-of-freedom robot arm. Although the workspace seems 
to have ample free space, the C-space reveals a significant challenge in 
motion planning. This is due to the presence of numerous narrow pas-
sages and inaccessible areas within the C-space, amplifying the diffi-
culties in motion planning. The probability of successfully extending a 
connection into a narrow passage is low. This often requires to run the 
sampling process multiple times in the nearby regions to establish the 
entire path along the narrow passage. 

Traditional SBP methods, exemplified by the Rapidly-exploring 
Random Tree (RRT) and its variants (LaValle, 1998), utilize incremen-
tal sampling of the tree structure to establish connections between 
sample points. However, these methods may discard valid sample points 
if the nearest node in the single tree fails to find a collision-free path to 
these sample points in the C-space. This limitation stems from the tree 
expansion being constrained within a local area defined by the boundary 
tree nodes. Furthermore, planning attempts, whether successful or un-
successful, often yield valuable insights that can guide motion planning 
to concentrate in the regions of the C-space that demands greater 
attention as well as inform refinements in the planning strategy itself. 
However, these insights are frequently overlooked by traditional 
methods. In highly constrained environments characterized by a 
multitude of narrow passages or complex geometries, traditional 
methods often struggle to find feasible planning solutions due to these 
limitations. 

To address this issue, we propose a robot motion planning approach 
that leverages a multi-tree structure to explore the C-space by main-
taining both high visibility as well as local connectivity information of 
the collision-free regions. Compared to traditional methods, our 
approach can utilize information from previous planning attempts (e.g., 
those already planned sample points) to improve subsequent planning 
strategies. It can effectively address motion planning problems in highly 
constrained environments. The main contributions of this paper include:  

– A multi-tree structure for robot motion planning that combines the 
advantages of rapid exploration and global exploration is developed. 
This structure enhances the efficiency of the exploration process and 
effectively mitigates the challenges often encountered in single-tree 
planning.  

– An information gain-based subtree generation method that can 
identify those inadequately explored regions is designed. This 

method prevents excessive attention on areas that have already been 
relatively fully explored.  

– An upper-confidence bound (δ)-based subtree selection method that 
balances exploration versus exploitation is proposed. This method 
allocates computational resources effectively based on the 
complexity of C-space. 

– A dynamic subtree planning method that flexibly updates the sam-
pling direction and step size is developed. This method can increase 
the likelihood of generating successful paths by utilizing both suc-
cessful and failed planning results. 

The effectiveness of the proposed approach is examined in both 
computer simulations and physical experiments. Our approach shows 
strong motion planning capability and adaptability in complex envi-
ronments. The rest of the paper is structured as follows. Section 2 pre-
sents a literature review of previous methods addressing the sampling 
problem in highly constrained spaces. Section 3 provides the problem 
formulation, and Section 4 introduces the proposed approach and ex-
plains the key techniques involved. Section 5 showcases the effective-
ness of the proposed approach through 2D, 4D, and 6D simulation 
experiments, as well as physical experiments (7D) in industrial pick-and- 
place scenarios. Section 6 summarizes this work and highlights potential 
directions for future research. 

2. Related work 

SBPs can be broadly categorized into single-query and multi-query 
planners. Single-query planner, such as Rapidly-exploring Random 
Tree (RRT), generates a tree by incrementally adding nodes, starting 
from the robot’s initial configuration, and growing towards randomly 
sampled configuration points in the C-space. In contrast, multi-query 
planner, such as the Probabilistic Road Map (PRM) (Kavraki et al., 
1996), constructs a roadmap by precomputing and storing a graph that 
captures the connectivity of the robot’s free C-space. Nodes in this graph 
represent randomly sampled configurations, and edges indicate valid 
paths between them. However, in highly constrained spaces, generating 
valid samples for either single or multi-query planner can be chal-
lenging, and the possibility of forming valid connections is low. 
Consequently, these algorithms may struggle to find paths with limited 
time. To address this issue, researchers have developed various tech-
niques, such as bridge tests, bias toward regions with narrow structures, 
heuristic measures of obstacle boundaries, multi-tree structures, and 
learning-based methods. 

The bridge test (Wilmarth et al., 1999) focuses on collision detection 
in C-space between two endpoints and their connecting line’s midpoint. 
If the endpoints collide but the midpoint does not, the midpoint may be a 
valid sample for the developing roadmap. Yet, this approach faces 

Fig. 1. Motion planning for a four-degree-of-freedom robot arm (two rotational joints θ1 and θ2, and two positional locations x and y). (a) and (b) present the 
workspace, while (c) illustrates the C-space containing the robot arm’s motion path. 
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scalability issues with complex C-space and tends to overlook previously 
acquired knowledge. 

Bias towards narrow structures, based on dynamic adjustments to 
sample distribution relative to local geometric complexities, has led to 
several methods. Dynamic domain RRT (Yershova et al., 2006) adapts its 
sampling to obstacles for better exploration. Principal component 
analysis (Dalibard & Laumond, 2009) and virtual force fields (Chen 
et al., 2021) respectively utilize statistical models and emulate repulsive 
forces for sampling guidance. However, over-focusing on narrow regions 
can neglect other viable paths, reducing the overall efficiency of path 
planning. 

Heuristic measures of obstacle boundaries, such as the heuristic- 
based certificate set (Ma et al., 2021), focus on generating samples 
near these boundaries. This set tracks collision status and minimum 
distances between tree nodes and nearest obstacles, reusing this data to 
enhance sampling precision. However, representing real-world obsta-
cles as complex geometries in C-space challenges heuristic navigation. 

As for the motion planning methods leveraging multi-tree structures, 
their significant advancement lies in creating numerous trees to 
concurrently explore distinct regions of the C-space. Notable method-
ologies like RRT-Connect* (Klemm et al., 2015) and RRdT* (Lai et al., 
2019) exemplify this trend. RRT-Connect* efficiently connects trees 
grown from start and goal configurations, accelerating the search pro-
cess. RRdT* introduces a disjoint tree structure for global exploration 
and local-connectivity exploitation. Alongside these, other notable 
methods such as Sampling-Based Tree Roadmaps (SRT) (Plaku et al., 
2005), C-FOREST (Otte & Correll, 2013), and MR-RRT (Sun et al., 2022) 
also contribute to the diverse landscape of multi-tree motion planning. 
The autonomy of each tree within the multi-tree structure empowers it 
to uniquely explore different regions, enriching the overall exploration. 
Moreover, the interconnected nature of these trees allows the sharing of 
sampled points. This enables the algorithms focusing on regions in the C- 
space showing higher promise or relevance to current planning task. 
Nevertheless, introducing multi-tree structures also brings challenges. 
The intricate architecture inherently intensifies the algorithmic 
complexity, demanding heightened computational resources. As such, 
the motion planning field needs more efficient strategies for multi-tree 
generation, selection, and planning. These strategies should aim for a 
balanced allocation of computational resources, ensuring that the ben-
efits gained from richer exploration will surpass the negative impact of 
increased computational complexity. 

In recent years, learning-based motion planning methods have been 
developed to replace the entire planning or focus on enhancing specific 
components of classical motion planning algorithms by advanced ma-
chine learning techniques (Wang et al., 2021). Ichter et al. (2018) train a 
conditional variational autoencoder using prior successful planning re-
sults to sample and project to promising regions in the working space. 
Wang et al. (2018) propose a Learning-based Multi-RRT (LM-RRT*) 
method that extracts key locations and selects subtree expansion with a 
ε-greedy strategy. Wang et al. (2020) introduce Neural RRT*, which 
combines a pretrained convolutional neural network model with RRT* 
to guide the sampling process and improve path planning performance. 
Lai et al. (2020) utilize the Markov chain method for sampling explo-
ration and update the chain-like sampling order with Bayesian tech-
niques. MPNet (Qureshi et al., 2021) generates feasible near-optimal 
paths directly using an encoding network and a planning network. 
However, challenges remain for these learning-based methods when 
dealing with highly constrained environments. Errors due to computa-
tional approximations or training-test mismatches can lead these 
methods to fail, highlighting the importance of enhancing the adapt-
ability and robustness of motion planning methods. 

In this paper, we combine the strengths of RRT-based planning and 
the multi-tree structure framework. Critical processes such as subtree 
generation, selection and planning are improved and guided by both 
environmental information and robot’s planning experience. Our 
approach allows better adaptation to highly constrained environments 
with enhanced algorithmic efficiency and generalizability. 

3. Problem formulation 

Let C = (0, 1)d be the configuration space, where d ∈ N, d ≥ 2. Let 
C obs be the obstacle region, such that C \C obs is an open set, and denote 
the obstacle-free space as C free = cl(C \C obs), where cl(⋅) denotes the 
closure of a set. The start point xstart is an element of C free, and the goal 
region X goal is an open subset of C free. A path planning problem is 
defined by a triplet (xstart ,X goal,C free). The definitions of key concepts in 
robot motion planning, such as path, feasible path planning, optimal 
path planning, probabilistic completeness and asymptotic optimality are 
provided as follows. 

Definition 1 (Path):. A function σ : [0, 1]→Rd of bounded variation is 
called a path if it is continuous. The cost of a path is the path’s total 
variation, i.e., the Euclidean distance traversed by the path in Rd. 

The feasibility problem of path planning is to find a feasible path, if 
one exists, and report failure otherwise: 

Definition 2 (Feasible Path Planning):. Given a path planning 
problem (xstart ,X goal,C free), find a feasible path σ : [0, 1]→C free such that 
σ(0) = xstart and σ(1) ∈ cl

(
X goal

)
, if one exists. If no such path exists, 

report failure. 

The optimality problem of path planning asks for finding a feasible 
path with minimum cost: 

Definition 3 (Optimal Path Planning):. Given a path planning 
problem (xstart ,X goal,C free) and a cost function c : Σ→R≥0, find a 
feasible path σ* such that c(σ*) = min{c(σ) }. If no such path exists, 
report failure. 

Definition 4 (Probabilistic Completeness):. Given any feasible path 
planning problem (xstart ,X goal,C free), a sampling-based motion planning 
algorithm is said to be probabilistically complete if the probability it 
returns a feasible path goes to one as the number of samples goes to 
infinity, 

liminf
n→∞

P(Σn ∕= ∅) = 1, (1)  

where n is the number of samples and Σn⊂Σfeasible is the set of feasible 
paths found by the planner from those samples. 

Definition 5 (Asymptotic Optimality):. Given any feasible path 
planning problem (xstart ,X goal,C free), a sampling-based motion planning 
algorithm is said to be asymptotically optimal if it converges asymp-
totically to an optimal solution as the number of samples goes to infinity, 

P
(

limsup
n→∞

min
σ∈Σn

{c(σ) } = c*
)

= 1, (2)  

where n is the number of samples, Σn⊂Σfeasible is the set of feasible paths 
found by the planner from those samples, c : Σ→R≥0 is the cost of a path, 
and c* is the optimal solution to the planning problem. 
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4. Methods 

4.1. The overall structure of the proposed approach 

The proposed approach, referred to as the Adaptive Multi-Rapidly- 
exploring Random Trees (AMRRT*) algorithm, employs a multi-tree 
structure to effectively utilize information from sampled points for 
exploring and exploiting the C-space. In our approach, the main trees 
represented as Tmain =

{
Tstart ,Tgoal

}
(visualized as the blue and yellow 

trees in Fig. 2) employ the RRT* structure. However, for constructing the 
remaining subtrees (illustrated by the green, orange, brown and purple 
trees in Fig. 2), we adopt the Markov Chain Monte Carlo property 
inherent to the RRdT* structure (Lai et al., 2019). This structure offers 
enhanced benefits, particularly in terms of optimizing local connectiv-
ity. The pseudo-code of AMRRT* is presented in Algorithm 1, which can 
be split into four parts: (1) Initialization (Line 1–6), setting the growing 
trees Tstart and Tgoal, and other M subtree samplers; (2) Subtree genera-
tion (Line 8), generating the subtree at the suitable location; (3) Subtree 
selection (Line 9), selecting the appropriate subtree to plan; (4) Subtree 
planning (Line 11), if Ti is subtree, we utilize dynamic subtree planning 
to exploit local structure. In the following subsections, the details of 
subtree generation, selection and planning are provided. 

Fig. 2. Multi-tree structure of AMRRT. The two red dots xstart and xgoal are the 
start and goal points respectively. 
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4.2. Information gain-based subtree generation 

Subtree generation is a crucial step in AMRRT*, where a new subtree 
is created from a sampled point in the C-space to explore new regions. 
Traditional methods for subtree generation, such as random generation 
or preprocessing the C-space to identify key regions, face several limi-
tations. Random generation often repeatedly explores already known 
areas of the C-space, which results in inefficient exploration and un-
necessary computational overhead. Preprocessing the C-space to guide 
the subtree generation, while potentially improving the exploration ef-
ficiency, introduces significant computational costs. Additionally, this 
method may lead to misjudgments of the path’s feasibility in complex 
scenarios. 

To address these challenges, we turn to clustering algorithms as they 
allow efficient partitioning of the C-space into regions of interest, 
facilitating targeted exploration with reduced computational demand. 
Various clustering algorithms are evaluated, including K-means, hier-
archical clustering, and density-based spatial clustering (DBSC), and 
each comes with specific strengths and weaknesses. K-means, for 
instance, requires prior specification of the number of clusters and often 
fails with non-spherical data. Hierarchical clustering scales poorly with 
large datasets, and DBSC’s performance heavily depends on the choice 
of distance threshold and density parameters, which vary greatly across 
different regions of the C-space. 

Considering the limitations of these methods, we propose an infor-
mation gain-based subtree generation method using the mean shift al-
gorithm (Comaniciu & Meer, 2002). We choose mean shift for its 
robustness in handling the non-linear data distributions typically seen in 
robotic C-space. It does not require predefined cluster shapes, making it 
versatile for varying data distributions encountered in our application. 
The information in a configuration space can be seen as a measure of the 
exploration level in a particular region, and higher information indicates 
less exploration in a region. Our method aims to improve the efficiency 
of exploration in the multi-tree structure by avoiding unnecessary 
sampling in those relatively fully explored regions. The pseudo-code of 
information gain-based subtree generation is shown in Algorithm 2.  

In the proposed approach, the mean shift algorithm treats the data 
points in the feature space as an empirical probability density function 
and identifies dense regions as local maxima or modes of the distribu-
tion. For each data point, a gradient ascent procedure is performed on 
the local estimated density until convergence is reached, resulting in 
stationary points that represent the modes. Data points associated with 

the same stationary point are considered to belong to the same cluster, 
allowing us to identify areas of the C-space that have been relatively 
fully explored. Subsequently, we compare the distances between the 
random subtree generation sets and the cluster centroids. Based on these 
distances, we normalize them to form probabilities, and use these 
probabilities to select new subtree generation points. The implementa-
tion details are provided below. 

Given nms nodes xi ∈ ℝd from tree T , the multivariate kernel density 
estimate using a radially symmetric kernel K(x) (i.e., Gaussian kernels) 
is given by 

f̂ K(x) =
1

nmshd

∑nms

i=1
K
(x − xi

h

)
, (3)  

where the bandwidth parameter h defines the radius of kernel function. 
The radially symmetric kernel is defined as 

K(x) = ck,d k
(
‖ x‖2), (4)  

where ck,d represents a normalization constant which assures the inte-

gral of K(x) from negative infinity to positive infinity is 1 and k(⋅) de-
notes the selected kernel function. Taking the gradient of the density 
estimate in Eq. (3), we can get: 

Fig. 3. An illustration of the mean shift procedure. Starting at node xi, the 
mean shift procedure is run to find the stationary points of the density function. 
The superscripts j = 0, 1,2 of xj

i denote the mean shift iterations. 
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∇ f̂ K(x) =
2ck,d

nmshd+2

[
∑nms

i=1
− k’

(⃦
⃦
⃦
x − xi

h

⃦
⃦
⃦

2
)]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
first term

⎡

⎢
⎢
⎣

∑nms
i=1xik’

(⃦
⃦
⃦

x− xi
h

⃦
⃦
⃦

2
)

∑nms
i=1k’

(⃦
⃦
⃦

x− xi
h

⃦
⃦
⃦

2
) − x

⎤

⎥
⎥
⎦

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
second term

,

(5)  

where k’(⋅) denotes the derivative of the selected kernel function. The 
first term in Eq. (5) reflects the density estimate at node x. Meanwhile, 
the second term denoted by m signifies the direction of the highest 
density increment and is proportional to the density gradient estimate at 
the same node. 

In the mean shift procedure for a given node xi (as illustrated in 

Fig. 3), we first compute the mean shift vector m
(

xj
i

)
where j of xj

i de-

notes the mean shift iterations. Then we modify the density estimation 

window using the formula xj+1
i = xj

i + m
(

xj
i

)
, and continue this process 

until the convergence criterion ∇ f̂ K(xi) = 0 is satisfied. It’s crucial to 
note that the selected nodes converging to an identical stationary point 
are categorized within the same cluster class. In the end we get the 
cluster centroids C = {C1,⋯,Cc} where Cc represents the c-th cluster 
centroid from the selected nodes of the tree T . The subtree generation 

sets are from SampleFree ω↦{Samplen(ω) }n→∞⊂C free which returns 
sequences of independent and identical distributed (i.i.d.) uniform 
samples in C free. The sets are denoted as S =

{
s1,⋯, sj,⋯, sM

}
,1 ≤ j ≤ M 

where sj represents the j-th subtree generation point. The distance be-
tween sj and C can be calculated using the shortest Euclidean distance, 
denoted as d

(
sj,C

)
. The distance measures its separation from the rela-

tively fully explored C-space areas, with greater distance indicating 
higher potential information gain. Taking the normalization of all the 
distances to form probabilities, we can get 

p
(
sj
)
=

exp
(
d
(
sj,C

) )

∑M
i=1exp(d(si,C) )

. (6) 

Finally, we select new subtree generation point s ∈ S based on their 
probability distribution set P(s) = {p(s1), p(s2),⋯, p(sM) }. To mitigate 
the computational cost associated with clustering, we can control the 
magnitude of nms while running the clustering process in parallel. In 
summary, our method can efficiently prioritize the searching of regions 
in the C-space that remain under-explored, ensuring that the computa-
tional resources won’t be overly allocated on those relatively fully- 
explored regions. 

4.3. Upper-confidence bound (δ)-based subtree selection 

In the multi-tree structure, subtree selection is challenged by the 
need to balance global exploration and local utilization, especially given 
resource constraints. In our study, this challenge is approached under 
the framework of Multi-armed Bandit (MAB) problem, a decision- 
making problem aiming to select the best among a set of actions by 
sequentially observing rewards. Each arm, i.e., subtree, acts as a dy-
namic density estimator for connections within C free. In each round r, 
we choose a subtree to plan and receive a randomized reward RTi ,r based 
on the planning result. The reward RTi ,r is intrinsically linked to the C- 
space, with its values fluctuating based on distinct exploration outcomes 
within this space. The cumulate sequence of rewards R(T ) =

{
RT,1,⋯,

RT,r
}

is a stochastic sequence with an unknown distribution of rewards 
that can change rapidly depending on the complexity of the C-space. The 
objective of MAB is to maximize the average return in r rounds, i.e., 
efficient allocation of resources based on the complexity of C-space. 

To solve the MAB problem for subtree selection, we employ the 
Upper-confidence Bound δ (UCB (δ)) (Abbasi-yadkori et al., 2011) al-
gorithm, characterizing by a confidence set of random values con-
structed from past selection of subtrees. A pseudo-code representation of 
UCB (δ) is provided in Algorithm 3.  

Suppose μTi 
is the expected reward of choosing the subtree Ti,i = 1,2,⋯,

M. Let μ* = maxμTi 
be the expected reward of the best tree, and ΔTi =

μ* − μTi 
be the regret with respect to the best subtree. We assume that if 

the tree Ti is chosen in round r, we obtain a reward μTi ,r + ηr. Here ηr 

represents the random noise associated with the reward of choosing a 
particular subtree in round r. NTi ,r denotes the number of times that we 
have chosen Ti up to round r, and RTi ,r indicates the average of the re-
wards received by the planning result of Ti up to round r. We construct 
confidence intervals for the expected rewards μTi ,r based on RTi ,r in the 
following lemma. For ∀i ∈ {1,2,⋯,M},∀r ≥ 0: 
⃒
⃒RTi ,r − μTi ,r

⃒
⃒ ≤ cTi ,r. (7) 

The length of confidence interval cTi ,r is independent of r, and it can 
be formulated as: 

cTi ,r =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
1 + NTi ,r

)

N2
Ti ,r

(

1 + 2log
(

M
(
1 + NTi ,r

)1
2

δ

))
√
√
√
√

. (8) 

The cTi ,r can help achieve high-probability constant regret Δ. Hence, 
at round r, we choose the tree: 
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Ti = argmax
i

RTi ,r + cTi ,r. (9) 

Subtrees situated in constrained regions face sampling challenges, 
primarily due to their limited feasible sampling space. In contrast, areas 
with high visibility can be rapidly explored when accessed. Conse-
quently, a greater allocation of resources is essential for subtrees in these 
constrained regions to effectively capture connectivity. To make RTi ,r 

responsive to the connectivity of the C-space, we design the rewards 
according to different planning results by drawing upon previous 
research (Wang et al., 2018). 

(1) If the subtree planner can directly connect the feasible sample 
points with the given step size, assign a reward RTi ,r = 0.1. This suggests 
the tree is in an open region with few obstacles. 

(2) If a sample point is feasible with the step size but cannot be 
directly connected collision-free by the subtree planner, the reward is set 
to RTi ,r = 0.2. 

(3) If conditions (1) and (2) are not satisfied, the subtree planner is 
considered in the cluttered region, and the reward is set to RTi ,r = 0.3. 

Meanwhile, by integrating an energy lifecycle-based mechanism (Lai 
et al., 2019), subtrees are prevented from getting stuck in dead ends and 
consequently wasting resources. When the energy of a subtree is 
exhausted due to the failure count, we regenerate the subtree in a new 
region, actively exploring new regions for path planning. The pseudo- 
code for energy adjustment is detailed in Algorithm 4. Briefly, our 
method allocates computational resources based on the intricacies of the 
C-space to achieve a balance between global exploration and local uti-
lization.  

4.4. Dynamic subtree planning 

The process of subtree planning involves determining the sampling 
direction (θ) and expansion step size (∊) to extend the current configu-
ration (xcurrent) to a new configuration (xnew), i.e., xnew←xcurrent + ∊⋅θ. 
However, previous studies rarely consider to determine the sampling 
distribution and expansion step size adaptively during subtree planning 
in an integrated way. 

To address this gap, we propose a dynamic subtree planning method 
that considers the sampling distribution as a Markov process with un-
observable states, and models the proposed distribution using tree 
sampling information from prior successful and failed samples. This 
method effectively leverages information from failed planning points 
that is often overlooked in traditional methods, providing valuable 
insight into subsequent planning processes. Furthermore, we utilize past 
planning information to support the precise determination of the step 
size of the local subtree planning. Notably, this process takes the 
complexity of the surrounding environment into consideration. 

Before delineating the specific methods, we need to first elucidate 
some foundational notions. Within our method, the subtree planner is 
conceptualized through the state S Ti ,t , wherein Ti ∈ T signifies the 
spatial location and planning information set in the local planning step t. 

The state is represented as the tuple S Ti ,t =
(

xt , θt ,∊t , θt− 1, D
f
t ,B (ρ)

)
. 

Herein, xt denotes the spatial location of subtree sampler, θt typifies the 
sampling direction, ∊t is the step size, θt represents the successful 
planning direction unit vector value at step t − 1, while D f

t is the un-
successful value set at step t, and B (ρ) embodies the hypersphere with 
radius R. Algorithm 5 presents the pseudo-code for dynamic subtree 
planning method. The details of determining the sampling direction and 
step size are explained as follows. 

Fig. 4. An example of updating sampling distribution. (a) shows how the subtree plans from t = 0 to t = 5, with solid orange lines indicating successful plannings 
and dashed blue lines indicating failed plannings. (b) depicts the uniform sampling at t = 0, with red arrow indicating the sampling direction drawn from it. (c) 
presents the von Mises-Fisher distribution at t = 1, with red arrow showing the sampling direction drawn from it. (d) illustrates the Bayesian update distribution at 
t = 4, with red arrow denoting the successful sampling direction and blue arrows representing failed attempts. 
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4.4.1. Sampling direction 
For sampling direction θ, we propose a method that uses Bayesian 

update rules (Lai et al., 2020) to model the proposed distribution, and 
optimize the parameter selection of the kernel function. This method 
aims to incorporate information from both successful and failed plan-
ning attempts to update the sampling distribution. Fig. 4 shows an 
example of updating sampling distribution. 

To effectively inherit insights from successful sampling direction 
while incorporating a stochastic component, we opt for the von Mises- 
Fisher distribution, denoted as p(θ; κ, μ), to serve as the initial prior 
distribution θt,j=0 ∼ D t,j=0(θ) = p(θ; κ, μ) (Banerjee et al., 2005). Here, j 
represents the number of attempts at local planning step t for subtree 
planner i. The von Mises-Fisher distribution is a probability distribution 
on the unit sphere, specifically designed to model directional data as 
shown in Eqs. (10) and (11): 

p(θ; κ, μ) = 1
2πIv(κ)

exp(κ[θ − μ] ), (10)  

Iν(κ) =
1
π

∫ π

0
exp(κcosθ)cos(νθ)dθ, (11)  

where θ is the random angular variable, μ is the average direction, i.e., 
the previously sampled successful direction, and − π ≤ θ,μ < π, v = 0. κ 
is a measure of the concentration of the probability density function, 
located in the semi-infinite interval [0, ∞]. A larger κ means the selection 
of θ is more concentrated in the mean direction. Iv=0(κ) is the first class of 
modified Bessel functions. Based on the Bayesian update principle, the 
update of the sampling distribution can be expressed as follows: 

D t,j(θ) = D posterior(θ)∝D likelihood • D prior. (12) 

Then the periodic kernel function k(⋅) that encapsulates the idea of 
having a decreasing nature to resample in previously sampled regions is 
used to construct D likelihood∝1 − k(⋅). The kernel function k(⋅) is formu-
lated as follows: 

k
(
θ, θprimer

)
= σ2exp

(

−
2
l2

sin2
(

π θ − θprimer

p

))

, (13)  

where l denotes the length scale which directly influences the decay rate 
of the kernel function and σ2 serves as the scaling factor, corresponding 
to the period of the spherical distribution, and the repetition period p is 
set to 2π. 

Compared to previous work, our method leverages an exponential 
function to get a positive correlation between l and the size of the un-
successful value set D f . This correlation allows dynamic modification of 
l during the energy lifecycle of the subtree. The length scale l is calcu-
lated as: 

l = α + β
(

1 − exp− |D f |
)
, (14)  

where α is a constant term, β is a coefficient term and |⋅| represents the 
size of the set D f . Notably, as D f increases, the change of l leads to the 
decrease of the decay rate of the exponential component k

(
θ, θprimer

)
. 

Consequently, it contributes an enhanced correlation between θ and 
θprimer, suggesting their interrelation remains significant despite 
increasing distances. It leads to a more exploratory selection of sampling 
directions after successive failures, which assists with finding feasible 
direction in highly constrained environments. Fig. 5. An illustration of the step size selection. The process centers on the new 

subtree, represented by the purple point. 
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We can rewrite the update of the sampling distribution when j ≥ 1: 

θt,j ∼ D t,j(θ) = D t,j
(
θ|θt− 1,D

f
t
)

= D t,j− 1
(
θ|θt− 1,D

f
t
)(

1 − k
(
θ, θt,j− 1

) )
.

(15) 

It is important to note that, D t,0
(
θ
⃒
⃒θt− 1,D

f
t
)

reduces to D t,0
(
θ
⃒
⃒θt− 1,

D
f
t := ∅

)
= p(θ; κ, μ). Finally, we get the sampling direction 

θt,j ∼ D t,j(θ). In summary, our method can adaptively update the sam-
pling distribution based on historical planning results. 

4.4.2. Step size 
In our approach, we consider the selection of step size in subtree 

planning comprehensively at the regional scale to incorporate the in-
formation from the surrounding environment. To adjust the step size, we 
consider the previous planning results of the subtree planner. If the re-
sults indicate a smaller search space near the current location, the step 
size is reduced to better explore the region, i.e., the path planner be-
comes more “discreet” in this situation. 

As shown in Fig. 5, B i(ρ) denotes the hypersphere with a radius of ρ, 
which contains the state information of all subtree planners at multiple 
time steps. We use this regional scope to extract the average failed at-

tempts (
⃒
⃒D f ⃒⃒ ∈ B i(ρ)) from all local subtree planners and optimize the 

step size selection as follows: 

∊i = g
( ⃒
⃒D

f ⃒⃒
)
(

log(n)
n

)
1
d, (16)  

where ∊i is the step size, n is the number of sampling nodes, d is the 

dimensionality of the planning problem and g
( ⃒
⃒D f ⃒⃒

)
is a function that 

maps the complexity of the state information within the hypersphere, 
reflecting the complexity of the surrounding environment. The function 

g
( ⃒
⃒D f ⃒⃒

)
is defined as: 

g
( ⃒
⃒D f ⃒⃒

)
= γexp

(

−

⃒
⃒D f ⃒⃒

E

)

, (17)  

where γ is a positive constant and E is the initial energy of the subtree. 
Our approach can optimize step size selection by integrating previous 
planning information across the predefined region. 

4.5. Analysis of the probabilistic completeness and asymptotic optimality 
for AMRRT* 

In this section, we provide proofs of the probabilistic completeness 
and asymptotic optimality for AMRRT*. 

Theorem 1 (Probabilistic Connection of Subtrees:. (Wang et al., 
2018)): For a set of sampled points 

{
x1(xstart), x2,⋯, xk

(
xgoal

) }
serving 

as root nodes and the subsequent extension of k trees {T1,T2,⋯,Tk}, the 
total number of sample nodes n extended by all trees satisfies the 
inequality: 

n ≥ k(αβ∊)− 1ln[4(1 − ∊) ]ln

(
3ln
[
2k2(1 − ∊)

]

γβ

)

+ kξ− 1ln

(
3k2

2γ

)

, (18)  

where ∊,α, β, γ are constants in (0,1) (Hsu et al., 1997) and ξ is defined 
as the proportion of C free to C . If the inequality is satisfied, then the 
probability that every pair among these k trees can be successfully 
connected is at least 1 − γ. 

Theorem 2 (Infinite Sampling Uniformity):. AMRRT*can cover 
C free in uniform sampling as the number of random samples goes to 
infinity. 

Proof. Given Lines 6 to 7 of Algorithm 2, if a subtree Ti ∈ T exists 
within a distance ∊, the proposed sample point will be incorporated into 

Fig. 6. Three 2D (a, b, c), one 4D (d) and one 6D (e) experimental scenarios.  
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the existing subtree Ti and no new subtree will be created. Denote the 
closed sphere with radius ∊ > 0 centered at a node x in T as B x(∊). 
Every new subtree Tnew will not be located inside the sphere B x(∊) from 
Ti ∈ T where Ti ∕= Tnew. Referring to the dense set theory (Munkres, 
2020), as the number of nodes increases, the union of the volume of 
B x(∊) will cover C free. Consequently, the total number of subtrees is 
restricted by the sequence of connected ∊-sphere until their union vol-
ume completely fills C free. As all subtrees in T incorporated into 
Tmain = {Tstart , Tgoal}, AMRRT* sampling will be chiefly influenced by 
Lines 13 to 15 of Algorithm 1, transitioning the algorithm to predomi-
nantly use SampleFree within C free. This ensures that as the sample 
count escalates, AMRRT* can realize infinite sampling uniformity. 

Theorem 3. (Probabilistic Completeness):. AMRRT* attains proba-
bilistic completeness for motion planning as the number of samples goes 
to infinity. 

Proof. As stated in Theorem 2, there will be no new subtrees being 
created as the number of samples goes to infinity. Therefore, the 
behavior of AMRRT* sampling will be dominated by Lines 13 to 15 of 
Algorithm 1 when all subtrees in T are joined to Tstart, meanwhile the 
AMRRT* algorithm changes to typical RRT structure. Therefore, 
AMRRT* will be reduced to use SampleFree. According to the probabi-
listic completeness of RRT (LaValle, 1998), there exists a constant a > 0 
that： 

liminf
n→∞

P
( (

ΣAMRRT
n ∩ X goal

)
∕= ∅

)
> liminf

n→∞
(1 − e− an) = 1, (19)  

where n is the number of samples, and ΣAMRRT
n ⊂Σfeasible is the set of 

feasible paths found by AMRRT* planner from those samples. The 
probabilistic completeness proof for the AMRRT* algorithm is complete. 

Theorem 4 (Asymptotic Optimality):. AMRRT* inherits asymptotic 
optimality as the number of samples goes to infinity. 

Proof. From Theorem 1, all trees in the C free will be connected to a 
single tree Tstart. According to Theorem 2, there will be infinite sampling 
available to improve that tree. Together with adequate rewiring pro-
cedure at Line 19 of Algorithm 1, if step size is larger than 

2
(

1 + 1
d

)1
d
(

μ(C free)
ζd

)
1
d, our approach inherits the asymptotic optimality 

(Karaman & Frazzoli, 2011): 

P

(

limsup
n→∞

min
σ∈ΣAMRRT

n

{c(σ) } = c*

)

= 1, (20)  

where n is the number of samples, d is the dimension of the space C , 
μ
(
C free

)
denotes the Lebesgue measure of the obstacle-free space, ζd is 

the volume of the unit sphere in the d-dimensional Euclidean space. The 
asymptotic optimality proof for the AMRRT* algorithm is complete. 

5. Experiments 

5.1. Experiment scenarios and settings 

We examine the effectiveness of the proposed approach in three 
kinds of simulated motion planning problems, including 2D scenarios 
with a mass-point robot, 4D scenario with a robot’s rotating arm, and 6D 
scenario with a multi-joint robot arm, respectively. Each simulation is 
designed to mirror common layouts found in real-world settings. Spe-
cifically, the 2D and 4D scenarios can reflect mobile robots moving in 
search or rescue missions, while the 6D scenario simulates a typical use 

Fig. 7. Cost values against the number of sampling nodes for different algorithms. The solid line represents the mean value, while the shaded area indicates the range 
between the maximum and minimum values. 

Table 1 
Average running time in seconds for different algorithms to obtain initial solu-
tions. Empty cells indicate cases when the algorithm fails to obtain a solution.  

Algorithm Scenario1 Scenario2 Scenario3 Scenario4 Scenario5 

AMRRT*  82.6  65.4  637.6  754.2  381.3 
RRT*  234.6  953.7  8130.4  1996.2 – 
RRT-Connect*  101.9  494.8  5040.2  984.1  1334.2 
BIT*  72.4  339.5  –  2235.6  1772.5 
RRdT*  95.3  86.1  815.6  901.0  572.6 
LMRRT*  68.2  278.9  4000.2  2100.7 –  
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of robot in material handling tasks. Additionally, we test our approach in 
a real object pick-and-place scenario typically encountered in 
manufacturing environments. 

Fig. 6 illustrates the 2D, 4D and 6D experimental scenarios. In the 2D 
scenarios, the robot is considered as a mass point moving on a two- 
dimensional plane. In the 4D scenario, a robot with its rotating arm 
has four degrees of freedom (i.e., (x, y, θ1, θ2) as shown in Fig. 6(d)). We 

construct 2D and 4D scenarios using image-based mapping. In these 
images, white areas indicate free spaces, while other colors represent 
obstacles. The starting points (xstart) are depicted as green triangles, 
while the goal points (xgoal) are represented by purple squares. The 6D 
scenario presents the task of moving a robot arm between two tables 
constructed on the Klapmt platform (Hauser, 2013). In this scenario, the 
six degrees of freedom of the robot include the rotational degrees of six 

Fig. 8. Average success rate of different algorithms under a specified planning time limit. (a) is limited to 150 s, (b) is limited to 500 s. (c), (d) and (e) are limited to 
1000 s. 

Fig. 9. The realistic object pick-and-place experiment setup and workflow. Exemplary motion paths generated with different algorithms are visualized and 
differentiated by color on the simulation platform. 
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joints. To augment the complexity of the task, the robot’s workspace is 
deliberately populated with wooden planks and horizontal beams. The 
wooden planks are placed to obstruct movement in three dimensions. 
Additionally, horizontal beams are strategically positioned to obstruct 
certain feasible paths to the tables, particularly when the robot arm 
attempts to retrieve the red cups. These settings are intentionally inte-
grated to escalate the planning difficulty, requiring advanced compu-
tational approach to navigate successfully. In the 6D scenario, red cup 1 
denotes the start position and red cup 2 signifies the goal position. In all 
five scenarios, we need to find feasible paths for these robots to move 
from initial positions to goal positions while avoiding collisions with 
obstacles. 

We compare our approach (AMRRT*) with other notable motion 
planning algorithms such as RRT* (Karaman & Frazzoli, 2011), RRT- 
Connect* (Klemm et al., 2015), LMRRT* (Wang et al., 2018), RRdT* 
(Lai, 2021), and Batch-Informed RRT* (i.e., BIT*) (Gammell et al., 
2020). The BIT* algorithm is configured to use a batch size of 20 sam-
pling points. We implement these algorithms in Python using the same 
planning framework and test them on a computer with Intel i7-10300 
CPU and 32 GB RAM. Each algorithm is executed 20 times in one sce-
nario to obtain reliable statistics. 

5.2. Experiment results 

In this section, the results of a series of experiments on our proposed 
AMRRT* approach and the compared algorithms are presented. Fig. 7 
illustrates the relationship between cost values and the number of 
sampling nodes for different algorithms. The cost value represents the 
cumulative length of the path in the final solution. It’s worth noting that 
the cost is set to 0 when the algorithm fails to find an initial solution. Due 
to its batch sampling nature, the BIT* algorithm sampled the least points 
in all scenarios for finding the initial solution and cannot be plotted in 
Fig. 7 like other algorithms. Table 1 summarizes the average running 
time of different algorithms when deriving initial solutions. Meanwhile, 
Fig. 8 compares the success rates of these algorithms in achieving initial 
solutions across various constraints and scenarios. If the histogram of an 
algorithm is not plotted in Fig. 8, it means that this algorithm is unable 
to generate paths successfully within the given time limit. 

(1) 2D scenarios with mass point 
In this simulated motion planning problem, we test three different 

types of 2D scenarios as shown in Fig. 6(a), (b) and (c). Scenario 1 
simulates an indoor environment where the prime robot must navigate 
through a complex layout of multiple rooms and obstacles to reach the 
target goal. Scenario 2 illustrates a maze environment, characterized 
with numerous twists, turns, and dead ends. Scenario 3 is a noisy map 
with cluttered obstacles. Scenario 3 depicts a challenging and intricate 
environment, characterized by a noisy, cluttered terrain densely packed 
with diverse obstacles. 

In Fig. 7(a), the proposed AMRRT* approach requires a higher 
number of samples to find a feasible solution compared to RRT* and 
RRT-Connect* algorithms in Scenario 1. However, the results presented 
in Table 1 support the notion that the multi-tree structure algorithms, 
including the LMRRT* and AMRRT* algorithms, require significantly 
less time for sampling valid points compared to RRT* and RRT-Connect* 
algorithms. Hence, despite the higher sampling point requirement, the 
multi-tree structure algorithm offers a distinct advantage in terms of 
planning time for simpler environments. Among the multi-tree structure 
algorithms, LMRRT* algorithm exhibits the lowest valid sampling 
requirement and average running time. This is attributed to the pre- 
processing of the environment map in the LMRRT* algorithm, which 
identifies critical path nodes that constitute the solution and uses them 
as nodes for subtree growth. Despite requiring fewer valid sampling 
points for successful planning, the success rate of LMRRT* under the 
given constraints is comparatively less (85 %) than that of the proposed 
AMRRT* approach (100 %), as shown in Fig. 8(a). 

Furthermore, in more complex congested environments, as 

illustrated in Fig. 7(b) and (c), the AMRRT* approach demonstrates a 
significant advantage in the number of required valid sampling points to 
obtain the initial solution and the average running time. As Fig. 8(c) 
shows, this advantage is more pronounced in additionally complex 2D 
environments where RRT*, RRT-Connect* and BIT* algorithms cannot 
even obtain initial solutions. Additionally, Fig. 8(b), (c), and (d) further 
highlight the superior stability of our approach compared to other al-
gorithms. Compared to other multi-tree algorithms, our approach does 
not need the preprocessing of the map environment as required by 
LMRRT*. Furthermore, it diverges from the entirely randomized tree 
generation and selection in the RRdT* algorithm. These unique attri-
butes position our algorithm as a standout performer among multi-tree 
structure algorithms. 

(2) 4D scenario with robot’s rotating arm 
As shown in Fig. 6(d), the environment of Scenario 4 consists of 

narrow passages where the robot’s arm must rotate to meet the angle 
transformation requirement and the position of the robot should also 
satisfy the passing condition. 

Fig. 7(d) illustrates that the performance of the proposed AMRRT* 
approach is between the RRT* and RRdT* in terms of the number of 
valid samples required to find a feasible solution. AMRRT* requires 
fewer valid samples than other multi-tree algorithms, indicating its 
capability dealing with narrow passages and its efficiency in allocating 
computational resources on areas of significance. Furthermore, Table 1 
confirms that the AMRRT* approach exhibits a lower time cost of 
sampling valid points compared to other algorithms. Fig. 8(d) demon-
strates that multi-tree structure-based algorithms exhibit higher success 
rates compared to RRT*, RRT-Connect*, and BIT* algorithms. The high 
success rate of our algorithm further validates the effectiveness of our 
subtree generation and selection strategies over other multi-tree algo-
rithms. Overall, the AMRRT* approach demonstrates superior adapt-
ability and efficiency, outshining other multi-tree structure algorithms, 
particularly in complex 4D environments. 

(3) 6D scenario with robot arm’s transport task 
In Scenario 5 (see Fig. 6(e)), a multi-joint robot arm with a single- 

degree-of-freedom mechanical gripper needs to start from the position 
of red cup 1, navigate through the complex table obstacles and the 
horizontal bar obstacles in the middle area, and reach the position of red 
cup 2. The clamping angle of the mechanical gripper is fixed. 

Fig. 7(e) shows that the proposed AMRRT* approach only requires 
4500 sampling points to construct the initial solution. Also, according to 
Table 1, AMRRT* can find the sampling points that constitute the initial 
solution in the shortest time. Moreover, Fig. 8(e) demonstrates that 
AMRRT* gets the highest success rate among all compared algorithms. 
In contrast, the RRT* algorithm is less effective in the 6D scenario, likely 
due to its inefficient single-tree structure. The other multi-tree algo-
rithms such as RRdT* shows a slightly lower success rate than AMRRT*. 
LMRRT* is unable to find feasible solution. This limitation stems from 
LMRRT*’s fundamental principle of extending subtrees from pre- 
identified key positions within the C-space. The dense distribution of 
obstacles in 6D scenario complicates the identification of these key po-
sitions, potentially leading to serious misidentifications. Furthermore, 
the absence of a subtree regeneration strategy in LMRRT* significantly 
impedes its ability to discover viable solutions in environments 

Table 2 
Average running time and success rate for different algorithms to obtain initial 
solutions. Empty cells indicate cases when the algorithm fails to obtain a solu-
tion in 1000 s.  

Algorithm Average Running Time (s) Success Rate 

AMRRT* 312.5 95 % 
RRT* – – 
RRT-Connect* 787.3 70 % 
BIT* 942.1 30 % 
RRdT* 499.8 85 % 
LMRRT* – –  
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characterized by denser obstacles and higher complexity. Conclusively, 
the experimental evaluation offers evidence of the superior efficiency 
and adaptability of the AMRRT* approach, especially within the high- 
dimensional, intricately structured environments. 

(4) Realistic object pick-and-place scenario 
To validate the effectiveness of the AMRRT* approach within real-

istic operational settings, we design and execute a set of experiments 
anchored on an object pick-and-place application, as illustrated in Fig. 9. 
Our experimental setup comprises a Jaka Zu3 multi-joint robotic arm 
equipped with a mechanical gripper, which presents a 7D planning 
problem. To ensure accurate object detection and pose estimation, our 
setup includes a dual-camera system. This system features two Realsense 
cameras, each equipped with advanced depth sensing technology. These 
depth cameras, positioned strategically on opposite sides of the work 
table, can capture high-resolution three-dimensional spatial informa-
tion. Both blue cylinders and rectangular wooden blocks are operation 
objects. In the depicted pick-and-place task, the robot arm transfers an 
object from one side of the baffle plate (i.e., the white centerline shown 
in the physical setup of Fig. 9 since only the thickness of the plate can be 
seen from the front view) to the other, navigating around three white 
cuboid obstacles on the baffle and two conical barrels. For precise pose 
estimation of objects, the OVE6D algorithm (Cai et al., 2022) is utilized. 
The images captured by Realsense cameras are processed by the OVE6D 
to obtain the pose data. These data are then fed into the Klampt simu-
lation platform, where the motion paths for robot are generated. 

In Fig. 9, an exemplary path generated by the AMRRT* algorithm is 
visualized and highlighted with red color. The paths generated by other 
methods are also illustrated in different colors. These visualizations 
reveal that the paths generated by AMRRT*, RRT-Connect*, and RRdT* 
are similar, demonstrating their ability for successful navigation in 
complex real environments. Particularly, the path generated by BIT* 
notably contains less unnecessary turning points compared to other 
methods. This performance could be attributed to the informed- 
connection nature of BIT*, but it comes at the cost of higher computa-
tional overhead and reduced robustness under complex planning 
conditions. 

Table 2 presents the comparison of the average computation time 
and success rate for these algorithms in the realistic object pick-and- 
place task (each algorithm has been executed 20 times for this task), 
revealing the operational efficiency and reliability of each. The AMRRT* 
algorithm not only exhibits a high success rate of 95 % but also main-
tains moderate computational demand, showcasing its balance between 
algorithmic performance and computational efficiency. In contrast, 
other algorithms do not compare favorably with our method in terms of 
average computation time and success rate. The results of this physical 
experiment underscore the effectiveness of our proposed approach in 
real-world robotic applications. 

6. Conclusion 

In this paper, we propose the AMRRT* robot motion planning 
approach to efficiently generate collision-free paths in highly con-
strained environments. Our approach leverages the rapid exploration 
property of the RRT method and the global exploration property of the 
multi-tree structure. Our contributions lie in the development of three 
methods to adaptively improve the subtree generation, selection, and 
planning within the multi-tree structure. Firstly, we develop an infor-
mation gain-based subtree generation method utilizing the mean shift 
algorithm, which can select subtree generation locations with higher 
information gain to explore the environment efficiently. Secondly, we 
model the subtree selection as a MAB problem, and utilize the UCB (δ) 
method to allocate resources by considering the balance between global 
exploration and local utilization. Thirdly, we design a dynamic subtree 
planning method that updates the sampling direction and step size based 
on local planning results, maximizing the likelihood of forming feasible 
paths. We also give theoretical proofs of the probabilistic completeness 

and asymptotic optimality of our approach. The experiment results 
demonstrate that our proposed approach outperforms other methods, 
particularly in success rate of path planning and computational time to 
find initial solutions. 

While the AMRRT* approach demonstrates considerable efficacy in 
highly constrained scenarios, its performance in simpler settings war-
rants careful consideration. In environments with less intricate re-
quirements, the multi-tree structure of AMRRT* may lead to less 
efficiency when compared to single or dual-tree algorithms. This 
outcome primarily stems from the computational burden inherent in the 
global exploration capabilities of multi-tree structures. Such environ-
ments may not fully utilize or require the comprehensive exploratory 
scope offered by AMRRT*, leading to potential inefficiencies. 

Future work may involve further optimizing the algorithm’s 
computational efficiency in different scenarios while preserving its high- 
quality solutions. Our proposed approach offers promising solutions for 
adaptive robot motion planning in highly constrained environments, 
and we hope our work will inspire the development of more advanced 
methods in this area. 
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