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Abstract
Hybrid robots can assist human workers in various tasks due to their integration of mobility and manipulability. The rapid 
diffusion of these robots in factories has significantly elevated the automation and intelligence level of manufacturing, while 
also brings challenges to human–robot collaboration. Traditionally, human workers need to instruct robots to perform a range 
of tasks by explicitly demonstrating these operations. However, this process imposes excessive burdens on workers as the 
tasks and environment for robots become more and more diversified and complex. To alleviate this issue, we propose an 
innovative robotic manipulation framework based on continual knowledge graph embedding. This framework enables hybrid 
robots to break free from the constraints of fixed rules set by human demonstrations, instead endowing them with inferring 
capability. The core idea is to utilize semantic information related to objects (such as category, material, and components) 
and tasks assigned to infer appropriate operational parameters for robots via a knowledge graph. These operational parameters 
include the suitable type of gripper, the proper area for object manipulation, and the reasonable force range for effective 
grasping. We conduct an experimental analysis of the proposed framework with a real-world hybrid robot, which performed 
158 different tasks involving 46 objects commonly seen in industry, achieving a success rate of up to 96.8%. Furthermore, 
our framework can continuously enhance the adaptability of robotic operations and effectively balance the learning of new 
and old knowledge. This research contributes to the development of advanced robotic manipulation method in the context 
of industrial human–robot collaboration.
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1 Introduction

A hybrid robot in factories usually consists of a robotic arm 
and a mobile platform, which is often an Automated Guided 
Vehicle (AGV) (see Fig. 1). This integration of mobility and 

manipulability allows hybrid robots to flexibly replace or 
assist workers in a variety of operational tasks in industry, 
such as retrieving certain tools or inspecting the status of 
facilities as needed by workers. In addition, the robotic arm 
on a hybrid robot can be equipped with Auto Tools Change 
(ATC), which greatly extends the type of end-effectors that 
a single robot can use and broadens the range of manipu-
lable objects. This advancement significantly improves 
human–robot collaboration efficiency and spurs the rapid 
spread of hybrid robots in smart factories [1].

The foundation for these hybrid robots to accomplish vari-
ous operational tasks lies in stable and reliable robotic grasp-
ing. Current hybrid robots often learn to perform tasks by 
imitating human demonstrations, i.e., the workers manually 
show robots the operational tasks to provide routine grasping 
instructions. This approach lacks scalability, particularly in 
factory environments where there is an abundance of objects 
with intricate designs and delicate handling requirements. 
Additionally, due to variations in production, the form and 
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materials of operation objects for robots frequently change, 
necessitating appropriate operational guidance under dif-
ferent grasping tasks. This complexity imposes significant 
burden on human workers.

To enable robots to grasp objects stably and diminish the 
need for manual instruction, a variety of grasping strategies 
have been developed. These include the utilization of dual-
arm robots with heterogeneous grippers [2], grasping based 
on tactile sensing (leveraging tactile feedback for robust 
grasping under uncertainty) [3], grasping based on visual 
and language instructions [4], and learning grasp poses from 
synthetic training examples [5]. Moreover, recent advances 
in control systems have enhanced the robots’ ability to adapt 
their grasping strategy to the characteristics of the object 
at hand [6–8]. Current grasping models primarily focus on 
the physical and geometric properties of objects, propos-
ing feasible areas for robotic grasping without considering 
the subsequent tasks to complete. However, the selection of 
grasping area should also be contingent upon these subse-
quent tasks. Moreover, robots should be capable of inferring 
the relationship between a given task and the operational 
object’s constituent components, thereby determining the 
proper grasping area based on the characteristics of the 
task. This aspect is particularly crucial in human–robot col-
laboration, as the correct choice of grasping area can ensure 
efficiency and safety in robot’s subsequent operations. For 
instance, in precision assembly or handling fragile items 
(e.g., micro sensors, delicate glass containers), the choice 
of grasp points directly influences the success of the task 
and the operational safety.

In fact, more intelligent grasping can be achieved by fully 
utilizing the semantic knowledge extracted from tasks and 
environment. The statistical correlations or heuristic features 
learned from historical grasping tasks can effectively sup-
port the generalization of grasping methods in new environ-
ments [9]. For example, recent research in semantic grasping 

suggests using semantic segmentation to predict an object’s 
affordances [10], leveraging data and semantic knowledge 
for task-oriented grasping areas [11], or employing probabil-
istic logical frameworks to identify the most likely graspable 
components of an object [12]. Yet, these methods primar-
ily focus on the object’s grasping area without considering 
factors such as the appropriate type of gripper or the opti-
mal force for grasping, which are crucial for many complex 
robotic operations. Kwak et al. [13] introduced a knowledge 
graph-based semantic grasping approach, capable of reason-
ing about the proper grasping area, end effector and grasping 
force. However, this approach mainly targeted at the grasp-
ing of relatively simple objects, such as various types of 
bottles. It also required extensive annotated data for training, 
making this approach less applicable for rapid deployment 
in complex factory settings.

To address these challenges, we propose a robotic 
manipulation framework for human–robot collaboration in 
industrial scenarios based on continual knowledge graph 
embedding. Our research aims to enhance the scalability of 
hybrid robot operations, fundamentally enabling these robots 
to become more versatile and adapt to a diverse array of 
tasks and operational objects. This is achieved by effectively 
utilizing semantic information regarding the operational 
objects (such as their categories, materials, and components) 
and the tasks assigned by workers to infer suitable robot 
manipulation parameters. Unlike previous research, these 
parameters include the appropriate type of gripper, the opti-
mal area for object manipulation, and the reasonable force 
for effective operation, as illustrated in Fig. 1. The continual 
knowledge graph embedding approach can effectively bal-
ance between acquiring old and new knowledge, preventing 
the robot from forgetting old knowledge while learning new 
information. To better understand the ambiguous instruc-
tions from human workers, our framework employs large 
pre-trained models to recognize the class, components, and 

Fig. 1  A typical scenario of 
human–robot collaboration in 
industrial environment



5433The International Journal of Advanced Manufacturing Technology (2024) 134:5431–5447 

materials of the objects to manipulate, which can rapidly 
adapt to new environments through fine-tuning without the 
need of extensive annotated data. It significantly reduces 
the time and cost associated with data collection and pro-
cessing. Our framework enhances the intelligent interaction 
between human workers and hybrid robots, providing an 
efficient pathway for the practical implementation and swift 
deployment of human–robot collaboration system in smart 
factories.

The rest of the paper is structured as follows. Section 2 
reviews related work in robotic grasping, knowledge graph 
embedding, and continual learning. Section 3 introduces our 
proposed approach and key techniques involved. Section 4 
presents the effectiveness of our approach through experi-
ments on measuring inference success, evaluating contin-
ual learning, testing real robot performance, and assessing 
recognition effect. Section 5 discusses the key findings and 
provides detailed analysis. Section 6 summarizes the work 
and suggests future research directions.

2  Literature review

2.1  Robotic grasping

Reliable robotic grasping strategies are pivotal for the suc-
cessful manipulation of various objects. These strategies 
involve not only the assessment of proper grasping poses 
(e.g., determining grasping angle and grasping area), but 
also the selection of suitable grasping tool and reasonable 
grasping force adaptive to different task scenarios and objec-
tives. Previous studies employing dense supervision strate-
gies [14] or using sampling-evaluation-based methods [15] 
have achieved high success rates in grasping generic objects 
by determining gripper poses. Similar research includes 
dual-arm robot grasping with heterogeneous grippers [2], 
tactile feedback-based grasping [3], vision and instruction-
based grasping [4], and learning grasp poses from synthetic 
training examples [5]. However, these studies mainly focus 
on the physical and geometric characteristics of objects 
to identify feasible grasping poses. These models, being 
task-unrelated, may not adapt well to complex and variable 
industrial scenarios, where even the same object requires 
different manipulation strategies within varying tasks. For 
instance, in the task of packaging electronic parts, the focus 
of the manipulation task is operational efficiency and safety. 
Robots may choose suction cups rather than conventional 
metal grippers to ensure rapid handling without compromis-
ing the safety of these parts. While in the task of assembling 
electronic parts that involve high-precision operations such 
as insertion, the manipulation focuses on the operational 
accuracy. Robots may employ mechanical grippers with fine 

control capability to take accurate picking, transporting, and 
placing actions.

Recent research has focused on enabling robots to make 
reasonable decisions, flexibly respond to diverse tasks and 
objects by incorporating semantic information. For example, 
CAGE [16] combines a neural network based on the Wide 
& Deep model [17] with context-aware semantic represen-
tation, achieving a balance in understanding and general-
izing context for semantic grasping. Duan et al. [18] used a 
multi-task semantic grasping convolutional neural network 
to understand the relationship between objects and grasp-
ing in various scenarios, utilizing multimodal information 
to choose the best grasping area of objects.

In the realm of semantic grasping, the combination of 
knowledge graphs with grasping strategies has recently 
attracted significant attention. Murali et al. [11] introduced 
the GCNGrasp framework, utilizing semantic knowledge 
encoded in knowledge graphs to extend the TaskGrasp 
dataset for objects and tasks. Kwak et al. [13] developed 
roboKG, a hierarchical graph embedding system represent-
ing household items in terms of labels, components, and 
materials, which can predict the grasp parameters of grip-
pers. These methods provide an inspiration for constructing 
knowledge graphs for robotic operations. However, they 
primarily focus on home-application scenarios and lack 
the capability of continual learning, and they also require 
extensive annotated data for model training. In this study, 
we expect to address these issues in semantic grasping for 
robots, enabling the generation of appropriate grasping deci-
sions for different tasks and operational objects.

2.2  Knowledge graph embedding

Knowledge graph embedding (KGE) aims to map each entity 
and its relations in a knowledge graph into a low-dimen-
sional vector space as embeddings, which can be used to 
predict missing links between entities and facilitate knowl-
edge reasoning. This technology has been applied to enhance 
the performance of certain information query tasks such as 
recommendation systems [19]. For each knowledge triple 
(h, r, t) , a distance-based scoring function f (h, r, t) is used 
to model the plausibility of the triple. This function meas-
ures the distance between the entity embeddings of h and t , 
specific to the relation r.

A notable KGE method is TransE [20], which embeds 
entities and relations in a shared vector space of dimension 
d . Its loss function is defined as ‖h + r − t‖ , aiming to bring 
h closer to t  after translation by r . This can be extended 
with different geometric transformations, such as TransH 
[21], which projects the entity embeddings of h and t onto a 
relation-specific hyperplane, or RotateE [22], which defines 
the relation as a rotation in the complex vector space from 
entity h to t  . Therefore, their embeddings are expected to 
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satisfy h⊙ r ≈ t , where ⊙ denotes element-wise multiplica-
tion. DistMult [23] proposed constraining the relation matrix 
to a diagonal matrix, significantly reducing the number of 
parameters in the bilinear model. HAKE [24] maps entities 
into the polar coordinate system, with radial coordinates rep-
resenting entities at different semantic levels and angular 
coordinates distinguishing entities at the same level. These 
structured KGE methods provide direct data mapping, suit-
able for handling well-defined entities and relations, effec-
tively supporting the decision-making process in industrial 
robot operations.

Recently, description-based KGE methods are emerging 
[25–27]. Their essence lies in the integration of Large Lan-
guage Models (LLMs), which can facilitate KGE methods 
in encoding or generating facts from textual information. 
However, description-based methods rely on large volumes 
of high-quality consistent textual data, and complex text pro-
cessing techniques. In this study, we expect to leverage the 
capabilities of structured KGE methods to address complex 
challenges in knowledge representation and reasoning.

2.3  Continual learning for knowledge graph 
embedding

Many previous knowledge graphs, especially those used for 
industrial robot grasping, undergo incremental updates as 
the operational objects in the industrial environment fre-
quently change. Static embedding models usually necessitate 
retraining the entire knowledge graph after each update [28]. 
This process is further complicated by data incompleteness 
in industrial scenarios [29] due to privacy protection, data 
storage constraints, or limited data acquisition windows. 
Utilizing all training data to update the entire knowledge 
graph is time-consuming and sometimes impractical, thereby 
highlighting the necessity of continual learning methods.

Continual learning, a subset of lifelong machine learning, 
aims to acquire knowledge of new domains, categories, or 
tasks without erasing previous learning experiences [30]. 
Various continual learning methods have been proposed by 
previous researchers. For example, regularization allows 
for adjusting shared weights that perform well across both 
past and recent sessions by enforcing some regularization 
terms in new learning sessions [31, 32]. Modifying network 
architectures [33, 34], as well as generative replay, such as 
deep generative replay, enable learning the distribution of 
training data from earlier learning sessions [35]. The crux 
of continual learning of graph embeddings lies in apply-
ing the principles of continual learning to the structure of 
knowledge graph, allowing the system to maintain flexibil-
ity and continuity of knowledge in a constantly changing 
environment. Knowledge graphs provide a rich informa-
tion network through structured relations of entities, but 
when confronting dynamic environments, this network 

necessitates continuous updates and adjustments [36]. As 
robots increasingly encounter new environments and tasks, 
continual learning can effectively balance the learning of 
new and old knowledge, ensuring that robots do not forget 
old knowledge while learning new information [37]. In this 
study, we propose to construct a continual knowledge graph 
embedding approach suitable for robotic manipulations in 
industrial settings. Compared to previous work, we aim to 
update the knowledge graph embedding network under the 
complete knowledge graph of continuously updated manipu-
lation demonstrations, significantly enhancing the transfer-
ability of the task planning for robotic manipulations.

3  Method

3.1  Robotic manipulation framework for industrial 
human–robot collaboration

Figure 2 illustrates the proposed comprehensive robotic 
manipulation framework to enhance industrial human–robot 
collaboration. The framework comprises four key processes: 
Instruction, Recognition, Inference, and Motion Planning. 
Each process plays a crucial role in achieving seamless and 
efficient collaboration between human workers and hybrid 
robots within an industrial setting.

The Instruction process interprets and fulfills factory 
workers’ requirements for assistance in object-related 
manipulation tasks. The hybrid robot, equipped with ATC 
(Auto Tools Change), demonstrates versatility by swiftly 
switching between various end-effectors (e.g., parallel jaw 
gripper, soft gripper, suction cup, electric screwdriver, etc.) 
to adapt to the task at hand. As depicted in Fig. 2, a typical 
process involves a worker indicating the need to grasp an 
object situated on a table. Upon receiving this instruction, 
the hybrid robot initiates the recognition of the grasping 
object.

The Recognition process is pivotal for understanding 
the physical object through the perception ability of robots. 
It involves the identification of object class, semantic seg-
mentation, and material detection. Initially, the robot utilizes 
its arm-mounted camera to scan the object and acquire its 
3D point cloud data (as demonstrated with a box cutter in 
Fig. 2). This data is then rendered into multiple views to 
facilitate comprehensive analysis of the object. By feeding 
the images of these views into the CLIP model [38], a multi-
modal pre-trained model that combines vision and language 
comprehension, our system can accurately recognize the 
object’s class. After that, the PartSLIP model [39], adept 
at zero-shot/few-shot semantic segmentation processes the 
object’s different views to accomplish semantic segmenta-
tion at the instance level. The segmentation outcomes, cou-
pled with material detection through the DEP model [40], 
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enrich our framework’s understanding of the object’s com-
ponents with their respective materials.

The Inference process first utilizes the information 
acquired from the Recognition process to formulate a task 
instance in the form of knowledge graph triples in accord-
ance with the developed Industrial Robot Manipulation 
Knowledge Graph (IRMKG). After that, the Synaptic 
Intelligence—Hierarchy Aware Knowledge Graph Embed-
ding (SI-HAKE) method is designed to infer the optimal 
manipulation parameters of the task instance considering 
the object’s physical characteristics and the task require-
ments. These parameters include the choice of gripper, the 
force magnitude, and the specific component of the object 
to be grasped. The IRMKG and the SI-HAKE method will 
be detailed in Sections 3.2 and 3.3.

The Motion Planning process then deals with the gener-
ated manipulation parameters. Simulation environments are 
utilized to generate the motion planning results and refine 
the control commands. These commands are finally executed 
by the physical hybrid robot, translating the virtual motions 
into tangible actions.

By integrating advanced object recognition, knowledge 
graph-based manipulation inference and efficient motion 
planning, the proposed robotic manipulation framework sets 
a new practice for human–robot collaboration. The subse-
quent Sections 3.2 and 3.3 will provide a detailed explana-
tion of the framework’s core mechanisms: the construction 
of the knowledge graph (IRMKG) and the graph inference 
method (SI-HAKE).

3.2  IRMKG: industrial robot manipulation 
knowledge graph

In industrial environments, the completion of specific tasks 
assigned by workers, such as retrieving a tool from an adja-
cent table, is a sophisticated decision-making process for 
hybrid robots. This process involves determining the opti-
mal grasp point, selecting the appropriate end-effector, and 
applying the correct force to ensure the successful comple-
tion of the task. To address this challenge, we develop the 
Industrial Robot Manipulation Knowledge Graph (IRMKG), 
a knowledge graph representing the expert-defined knowl-
edge of robotic manipulation required for various tasks on 
different objects in industrial scenarios. Drawing the inspi-
rations from the construction logic of GCNGrasp [11] and 
roboKG [13], we redefine and enrich their relational schema 
in the design of IRMKG. The IRMKG is constructed by 
ten distinct entity types, ten unique relationships, and ten 
specific triple configurations as detailed in Tables 1 and 2. 
These tables provide examples of each entity and relation-
ship with the number of these examples.

We introduce an entity type named Object_Class to rep-
resent objects in our application context (e.g., Saw, Plier, 
Screwdriver, Screw, Container). For each object, the number 
of Object_Instance entities corresponds to the combination 
of the object’s material and components. The relationship 
Instantiate_Object connects Object_Class and Object_
Instance, as in the triple of (Saw, Instantiate_Object, Cross_
Saw). We represent materials with Material_Class. Unlike 

Fig. 2  The proposed robotic manipulation framework for industrial human–robot collaboration. The grasping of a box cutter is used as an illus-
trative example
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roboKG, we associate materials to specific components of 
objects, as materials can vary across different components 
of an object in industrial scenarios. For example, a saw’s 
handle can be made of plastic (Plastic, Make, Saw_Handle), 
while the blade is made of metal (Metal, Make, Saw_Blade). 
We consider 11 different materials: ceramic, fabric, food, 
glass, leather, metal, paper, plastic, rubber, stone, and wood. 
To connect Component_Category and Component_Class, 
we establish the relationship Specify_Component and tri-
ples like (Blade, Specify_Component, Saw_Blade). To rep-
resent which component is part of which object instance, we 
devise the relationship Is_Component_Of and triples like 
(Saw_Blade, Is_Component_Of, Cross_Saw).

We consider nine different operational tasks: Grasp, Lift, 
Open, Pour, Push, Pull, Rotate, Squeeze, and Screw, repre-
sented by Task_Category. To distinguish each task based 
on the target object, we use Task_Class to indicate which 
task is performed on which specific object, such as Grasp_
Saw, Open_Container. To narrow Task_Category down to 
Task_Class, we define the relationship Specify_Task and 

triples like (Grasp, Specify_Task, Grasp_Saw). We utilize 
Task_Instance to map each task to a specific object, such as 
Grasp_Cross_Saw. To narrow Task_Class to Task_Instance, 
we define the relationship Instantiate_Task and triples like 
(Grasp_Saw, Instantiate_Task, Grasp_Cross_Saw). More-
over, each Task_Instance should be connected to Object_
Instance to indicate a task includes which object. To repre-
sent this, we create the relationship Include and triples like 
(Grasp_Cross_Saw, Include, Cross_Saw).

Finally, we define three special relationships directly 
related to robotic manipulation: Which_Gripper, Which_
Force, and Which_Component. Given a specific object 
and task, we indicate which gripper the robot should use, 
the force with which the robot should grasp the object, 
and which component of the object the robot should grasp. 
IRMKG incorporates five different types of grippers: parallel 
jaw gripper, soft gripper, hard suction cup, soft suction cup, 
and electric screwdriver. Additionally, we categorize the rea-
sonable magnitude of grasping force into three different lev-
els: weak, medium, and strong. For each Task_Instance, we 

Table 1  Entity types in IRMKG

Entity type Examples Num. of 
exam-
ples

Object_Class Saw, Piler, Screwdriver··· 96
Object_Instance Cross_Saw, Forest_Saw, Piler_1··· 170
Component_Category Body, Head, Blade, Handle, Lid 5
Component_Class Saw_Blade, Saw_Body, Saw_Handle, Screwdriver_Handle··· 142
Material_Class Ceramic, Fabric, Food, Glass, Leather, Metal, Paper, Plastic, Rubber, Stone, Wood 11
Task_Category Grasp, Lift, Open, Pour, Push, Pull, Rotate, Squeeze, Screw 9
Task_Class Grasp_Saw, Lift_Saw, Push_Saw, Pull_Saw··· 391
Task_Instance Grasp_Cross_Saw, Lift_Cross_Saw··· 624
Gripper_Type Parallel_Jaw_Gripper, Soft_Gripper, Hard_Suction_Cup, Soft_Suction_Cup, Electric_Screw-

driver
5

Grasping_Force Weak, Medium, Strong 3

Table 2  Relationship types in 
IRMKG

Relation Triple type Num. of 
exam-
ples

Instantiate_Object (Object_Class, Instantiate_Object, Object_Instance) 170
Specify_Component (Component_Category, Specify_Component, Component_Class) 142
Is_Component_Of (Component_Class, Is_Component_Of, Object_Instance) 236
Make (Material_Class, Make, Component_Class) 142
Specify_Task (Task_Category, Specify_Task, Task_Class) 391
Instantiate_Task (Task_Class, Instantiate_Task, Task_Instance) 624
Include (Task_Instance, Include, Object_Instance) 624
Which_Gripper (Task_Instance, Which_Gripper, Gripper_Type) 624
Which_Force (Task_Instance, Which_Force, Grasping_Force) 624
Which_Component (Task_Instance, Which_Component, Component_Class) 624
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specify an ideal type of gripper, grasping force, and grasping 
component. For example, when grasping a cross saw, we 
construct triples like (Grasp_Cross_Saw, Which_Gripper, 
Parallel_Jaw_Gripper), (Grasp_Cross_Saw, Which_Force, 
Medium), and (Grasp_Cross_Saw, Which_Component, Saw_
Handle) to indicate the manipulation parameters of this task.

3.3  Continual knowledge graph embedding: 
Synaptic Intelligence—Hierarchy Aware 
Knowledge Graph Embedding (SI‑HAKE)

In this subsection, the Synaptic Intelligence—Hierar-
chy Aware Knowledge Graph Embedding (SI-HAKE), a 
continual knowledge graph embedding (CKGE) method 
designed for dynamic graph inference within the IRMKG, 
is explained. Before digging into the details of SI-HAKE, 
the necessary technical background is provided.

Knowledge Graph Embedding (KGE) represents 
knowledge graph G in vector space, learning a con-
tinuous vector representation from a dataset of triples 
D = {(h, r, t)i, yi ∣ hi, ti ∈ E, ri ∈ R, yi ∈ {0,1}} , with i ∈ {1… |D|} . 
Here yi denotes whether relation ri ∈ R holds between enti-
ties hi, ti ∈ E . Each entity is encoded as a vector � ∈ ℝ

dE , 
and each relation is encoded as a mapping between vec-
tors � ∈ ℝ

dR , where dE and dR are the dimensions of vectors 
and mappings respectively. The embeddings for E and R 
are learned through a scoring function f (h, r, t) that assigns 
higher values to triples that correctly depict true facts, 
known as positive triples.

The goal of CKGE is to extend KGE framework to 
dynamically update and refine the embeddings as new infor-
mation is integrated. This ensures that the knowledge graph 
can evolve over time, addressing the challenge of new data’s 
arrival. CKGE involves splitting the dataset of triples D into 
multiple subsets Dn for different learning sessions, where n 
denotes the session index. Each subset Dn contains a distinct 
set of triples, corresponding to a specific set of entities and 
relationships, which grows as new observations are made 
(i.e., |En| ≤ |||E

n+1|||).
In our research, a hierarchical structure exists between 

entities, such as Component_Category → Component_Class 
and Task_Category → Task_Class. To represent entities and 
relations in a continuous feature space while maintaining 
the structure of the knowledge graph, we propose the Syn-
aptic Intelligence—Hierarchy Aware Knowledge Graph 
Embedding (SI-HAKE) method. This continual knowledge 
graph embedding method maps entity embeddings to a polar 
coordinate system, distinguishing entities at different and 
same levels of semantic hierarchy. The SI-HAKE comprises 
two parts: the modulus part is used to differentiate entities 
between different levels of semantic hierarchy, and the phase 
part is used to distinguish entities within the same level.

To distinguish embeddings in the different parts, we use �m 
( � can be � or � ) and �m to denote the entity embedding and rela-
tion embedding in the modulus part, and use �p and �p to denote 
the entity embedding and relation embedding in the phase part.

The formulation of modulus part is given by:

where ◦ is the Hadamard product, ��, �� ∈ ℝ
dE , �� ∈ ℝ

dR
+  , 

allowing recognition of the existence of a relationship 
between two entities through signs. The corresponding dis-
tance function is defined as:

Similarly, the formulation of phase part is given by:

where hp, tp, rp ∈ [0,2�]dE . Since in the polar coordinate 
system, phases possess periodic characteristics, therefore, 
the distance function is defined in sin form:

where sin is an operation that applies the sine function to 
each element of the input. Combining the modulus parts 
dr,m

(
��, ��

)
 and phase part dr,p

(
��, ��

)
 , the distance funciton 

is defined as:

where � ∈ ℝ is a parameter learned by the method. For an 
entity � , SI-HAKE maps it to 

[
��;��

]
 where [⋅;⋅] denotes the 

concatenation of two vectors. The scoring function fr(�, �) 
for evaluating the likelihood of relationships between pairs 
of entities is defined as:

However, assuming all entities and relations are known 
prior to training is impractical. Considering the increased 
learning sessions in continual learning, we use synaptic intel-
ligence [31] to consider the weight-specific contributions to 
the reduction in loss over a learning session. It encourages 
trained weights to not deviate from their previous values.

Based on this scoring function, the loss function is defined 
by self-adversarial training plus the synaptic intelligence part 
as:

(1)hm◦rm = tm

(2)dr,m(hm, tm) =∥ hm◦rm − tm∥2

(3)
(
hp + rp

)
mod 2� = tp

(4)dr,p(hp, tp) =∥ sin(hp + rp − tp)∕2∥1

(5)dr(h, t) = dr,m
(
hm, tm

)
+ �dr,p

(
hp, tp

)

(6)fr(h, t) = −dr(h, t) = −∥ hm◦rm − tm ∥
2
− �∥

���

(
hp+rp−tp

)

2
∥
1

(7)

LDn = −log�(� − dr(h, t)) −

|Dn|∑

i=1

p(h�
i
, r, t�

i
)log�(dr(h

�
i
, t�
i
) − �)

(8)
L = LDn + � ⋅ (∥ Ωe

(
�n − �n−1

)
∥
2

2
+ ∥ Ωr

(
�n − �n−1

)
∥
2

2
)
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where � is a fixed margin, � is a sigmoid function, and (
h′
i
, r, t′

i

)
 is the i-th negative triple. � is a regularization scal-

ing term tuned as a hyper-parameter, and Ω is the parameter 
regularization strength.

Equation (7) is designed to discern between positive tri-
ples (true facts) and generated negative triples (false facts), 
enhancing the method’s precision in representing graph 
relationships. Equation (8) introduces the synaptic intel-
ligence part ( ∥ Ωe

(
�n − �n−1

)
∥
2

2
+ ∥ Ωr

(
�n − �n−1

)
∥
2

2
 ) by 

incorporating a regularization scaling term ( � ). This term 
penalizes abrupt changes in the embeddings of entities and 
relations across successive learning sessions. By ensuring 
gradual evolution of the method’s embeddings, it facilitates 
the seamless integration of new information alongside the 
preservation of existing knowledge, a cornerstone for suc-
cessful continual learning.

In the SI-HAKE method, entities’ hierarchical rela-
tionships and category information are distinctively rep-
resented through the modulus and phase parts in a polar 
coordinate system. Figure 3 visualizes the embeddings 
of several entity pairs obtained from the SI-HAKE. Each 
point on this plot represents a mapping of the entity embed-
ding into the 2D space. The mapping process works as fol-
lows. Each entity is represented by an embedding with two 
parts: modulus and phase components. The modulus com-
ponent undergoes a transformation where the logarithm 
of its absolute value is multiplied by its sign, enhancing 
the contrast in magnitudes. The phase component is nor-
malized within the range of [−�,�] by dividing it by the 
embedding range and then scaling by � . The transformed 

modulus and phase components are then used to compute 
the Cartesian coordinates (x, y) for both the head and tail 
entities, converting polar coordinates (magnitude and 
phase) into a 2D space representation. The head and tail 
entities are plotted in this space, with each entity’s position 
reflecting its semantic hierarchy. From Fig. 3, we can see 
that the resulting scatter plot displays the entities as points 
in a 2D space. The distance between the points and the 
circle center reflects the moduli of the entities at various 
semantic levels. The clear concentric circles indicate that 
our method can effectively capture and represent semantic 
hierarchies among entities. By leveraging semantic hierar-
chical reasoning for link prediction, the SI-HAKE method 
facilitates the automatic inference of relevant parameters 
necessary to complete specific manipulation tasks.

Figure 4 demonstrates an illustrative example of graph 
inference using SI-HAKE. In this example, the goal is 
to predict the appropriate manipulation parameters for 
Grasp_Box_Cutter_1. Note that both Box_Cutter_1 and 
Scissor_1 possess handle and blade, with the handle being 
plastic and the blade metallic. Owing to these shared 
properties, the SI-HAKE method attempts to place the 
embedding vectors of Box_Cutter_1 and Scissor_1 close 
together. Furthermore, since Grasp_Box_Cutter_1 and 
Grasp_Scissor_1 share the Grasp in their entity hierarchy, 
it can be inferred that the robot could grasp the Box_Cutter 
in the same manner as grasping the Scissor. Thus, we can 
use the learned embedding vectors to predict the appropri-
ate gripper type, grasping force, and grasping component 
for a specific grasping task.

Fig. 3  Visualization of the embeddings of several entity pairs from SI-HAKE. a (Saw, Instantiate_Object, Cross_Saw), b (Grasp_Cross_Saw, 
Which_Gripper, Parallel_Jaw_Gripper) 
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4  Experiments and results

Four different experiments were conducted to validate the 
proposed robotic manipulation framework, especially the 
effectiveness of the developed IRMKG and the SI-HAKE 
method with a real hybrid robotic system. We first measured 
the inference success rate of the knowledge graph embed-
ding method (SI-HAKE) to verify the appropriate construc-
tion of IRMKG and the validity of SI-HAKE in predicting 
missing entities during testing. Then, we evaluated the effec-
tiveness of our method in the context of continual learning. 
After that, we tested the real robot based on the predictions 
obtained from IRMKG and SI-HAKE to check the success 
rate of robotic manipulation tasks. Lastly, we assessed the 
success rate of the Recognition process proposed in our 
manipulation framework where objects, components, and 
materials are automatically identified.

We built a hybrid robot system with a Jaka Zu7 multi-joint 
robotic arm combined with an AGV platform. To switch 
between different end-effectors for the robot, we installed 
Auto Tools Change (ATC) plates on both the robotic arm 
and end-effectors. Available end-effectors included paral-
lel jaw gripper, soft gripper, hard suction cup, soft suction 
cup, and electric screwdriver. The robot can manipulate tar-
get objects based on predictions for each Task_Instance of 
Gripper_Type, Component_Class, and Grasping_Force. For 
each component of the target object, its precise position and 

posture were obtained by the camera in the robot system. 
Grasping _Force was controlled at three different levels: 
weak, medium, and strong. Corresponding to these three 
different levels of grasping force, we set the gripping force 
for the parallel jaw gripper at 15 N, 25 N, and 35 N, the sur-
face pressure for pneumatic soft grippers and suction cups 
at 1.0 MPa, 1.5 MPa, and 2.0 MPa, and the torque for the 
screwdriver at 3 Nm, 5 Nm, and 8 Nm, respectively. The tri-
ples detailed in Section 3.2 served as the foundation for the 
training dataset. The hyperparameters of our method were as 
follows: dE, dR = 1000, lr = 0.0001, � = 8, �,Ωe,Ωr = 0.9 . 
For convenience in comparison, we refer to our knowledge 
graph-related methods (i.e., knowledge graph construction 
and embedding) as IRMKG in the following paragraphs.

4.1  Knowledge graph embedding method 
for predicting manipulation parameters

Given specific objects and tasks, we first tested whether the 
developed knowledge graph embedding method can accu-
rately predict the appropriate gripper type, grasping force, 
and grasping component without including the continual 
learning method (we tested the effect of the continual learn-
ing part in Section 4.2). The entire training set was utilized 
in this test. We compared our method with five baseline 
methods: Random Prediction (RD), Distribution-Based 
Random Prediction (DRD), Training Set Memory (TM), 

Fig. 4  An illustrative example of graph inference using the SI-HAKE method
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Naive Bayes Classifier (NBC) [41], and Markov Logic Net-
work (MLN) [42]. A detailed explanation of these compared 
methods is given below:

(1) Random Prediction (RD): Randomly predict a gripper 
type, grasping force, and grasping component.

(2) Distribution-Based Random Prediction (DRD): Con-
sider data distribution in the training set to predict a 
suitable gripper type, grasping force, and grasping 
component. For instance, if 65% of tasks in the train-
ing set use the parallel jaw gripper, the probability of 
selecting this gripper is set to 0.65.

(3) Training Set Memory (TM): Use the training triples 
from the training set without KGE (i.e., lacking infer-
ence for test triples) to answer queries. As there are 
no repeated triples in our training set, we relied on the 
main grasping method of the object class in the Task_
Instance in training set for grasping.

(4) Naive Bayes Classifier (NBC): Choose the most likely 
option for a given object and task characteristics by cal-
culating and comparing the conditional probabilities of 
each gripper type, grasping force, and component. We 
employed the smoothing probability estimation tech-
nique m-estimate [43] to avoid overly extreme prob-
abilities.

(5) Markov Logic Network (MLN): Answer queries using 
the pracmln tool [44] to learn statistical correlations 
related to objects and object properties in the dataset.

The tenfold cross-validation method was utilized to ensure 
a comprehensive evaluation, randomly dividing the dataset 
into ten subsets to represent the entire dataset. As illustrated 
in Table 3, IRMKG consistently outperformed the other five 
baseline methods. Notably, it achieved success rates of 0.957, 
0.981, and 0.949 in predicting the correct gripper type, force 
range, and grasping component, respectively. This high level 
of success rate highlights the method’s robustness and preci-
sion in understanding and analyzing the complex requirements 
of robotic operations. In contrast, the baseline methods, par-
ticularly RD and DRD, exhibited significantly lower success 
rate. RD’s random approach underscored the task’s complex-
ity, which cannot be addressed through mere guesswork. DRD, 

while slightly better, still failed to capture the nuanced deci-
sion-making process in determining proper robotic manipula-
tion parameters.

The IRMKG also achieved the highest success rate of 
simultaneously predicting all three parameters (i.e., gripper 
type, grasping force, and component) at 0.891. This under-
lines the method’s ability to handle multifaceted decisions in 
robotic operations. These findings indicate that our method 
significantly outperforms traditional methods in predicting the 
necessary parameters for robotic manipulation tasks.

4.2  Continual learning capability

In this subsection, we tested the continual learning capabil-
ity of our approach. We generated test triples corresponding 
to 30% of the training dataset’s size, ensuring these test tri-
ples were produced independently and not extracted from the 
existing training set. We further divided the training dataset 
into three distinct datasets, denoted as D1 , D2 , and D3 , corre-
sponding to different learning sessions ( S1 , S2 , and S3 ). Each 
S contains a non-overlapped subset of entities and relations in 
the training dataset. Similarly, the test dataset was partitioned 
into three corresponding segments: D1

T
 , D2

T
 , and D3

T
 . To dem-

onstrate the advantage of our approach in facilitating continual 
learning, we compared our method with a classical knowl-
edge graph embedding algorithm HAKE [24]. Compared to 
HAKE, our method incorporates the synaptic intelligence part 
as described in Eq. (8) to further enhance its continual learning 
capability. Our evaluation leverages four distinct metrics from 
[37] for their relevance in assessing the unique challenges and 
performance of continual learning.

(1) Average Accuracy ACC : ACCS2

(
D

2

T

)
 measures the aver-

age accuracy of the model prediction performance on D2

T
 after 

the end of the learning session S2 ; ACCS3

(
D

3

T

)
 measures the 

average accuracy on D3

T
 after the end of the learning session 

S
3 ; ACCS3

(
D

2

T

)
 measures the average accuracy on D2

T
 after the 

end of the learning session S3 . The calculation of ACCS2

(
D

2

T

)
 

is as follows:

(9)ACCS2 (D2

T
) =

1

|||D
2

T

|||

∑
(h,r,t)∈D2

T

�
[
fS2 (h, r) = t

]

Table 3  Average prediction 
success rate of six methods 
using tenfold cross-validation

Bolded values indicate the highest prediction success rates among all methods for each manipulation 
parameter

Manipulation parameter to 
predict

IRMKG RD DRD TM NBC MLN

Gripper type 0.957 0.157 0.571 0.675 0.721 0.754
Grasping force 0.981 0.288 0.602 0.716 0.747 0.808
Grasping component 0.949 0.173 0.536 0.643 0.698 0.727
All above 0.891 0.009 0.175 0.332 0.371 0.455
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where fS2(h, r) is the prediction function and � is the indica-
tor function, taking the value 1 when fS2(h, r) = t , otherwise 
0. Average Accuracy ACC is a number between 0 and 1, and 
the larger the better.

(2) Forward Transfer FWT  : FWTS3 = ACCS2

(
D

3

T

)
 meas-

ures the zero-shot learning effect of session S3 in D3

T
 by trans-

ferring the weights learned in the previous session S2 . FWT  
is also a number between 0 and 1, and the larger the better.

(3) Backward Transfer BWT  : BWTS3 = max
(
0,ACCS3

(
D

2

T

)
−ACCS2

(
D

2

T

)) 
measures the increase in the expected effectiveness of D2

T
 of 

the previous learning course S2 due to learning in session 
S
3 . BWT  is a number between 0 and 1, and a higher value 

indicates an improvement in model prediction accuracy on 
previous datasets after learning new information.

(4) Remember REM : REMS3 measures how the per-
formance in learning session S2 declines due to learning 
in subsequent session S3 . The calculation of REMS3 is as 
follows:

the numerator represents the number of triples that are cor-
rectly predicted in S2 and remain correctly predicted after S3 . 
An ideal value of REMS3 is 1, meaning that old knowledge 
is fully preserved without decay during the process of learn-
ing new knowledge.

In this experiment, our approach IRMKG demonstrated 
well performance in a continual learning environment as 
shown in Fig. 5. In terms of ACC , IRMKG achieved an 
accuracy of 0.701 on the dataset D2

T
 after the end of the 

second learning session S2 . After the end of the third 
learning session S3 , this accuracy increased to 0.941 on 
dataset D3

T
 and further enhanced to 0.963 on the dataset 

D
2

T
 . Additionally, its FWTS3 score of 0.684 indicates robust 

(10)REMS3 =

∑
(h,r,t)∈D2

T

�
�
fS2(h, r) = t ∧ fS3(h, r) = t

�

∑
(h,r,t)∈D2

T

�
�
fS2(h, r) = t

�

zero-shot learning capability, effectively applying previous 
insights to new data in D3

T
 . Furthermore, IRMKG’s BWTS3 

of 0.262 showcases its exceptional ability to improve upon 
previous knowledge without detriment from new learn-
ing sessions, a critical attribute of continual learning sys-
tems. In comparison, the HAKE method exhibited less 
impressive gains across these metrics, signifying its limi-
tations in both integrating new knowledge and enhancing 
performance on previously learned datasets. Specifically, 
its lower ACC ( ACCS2

(
D

2

T

)
 , 0.684; ACCS3

(
D

2

T

)
 , 0.920, 

ACCS3

(
D

3

T

)
 , 0.914), FWTS3 (0.663), and BWTS3 (0.263) 

scores highlight a constrained adaptability compared to 
IRMKG. Additionally, the Remember ( REMS3 ) score of 
1.0 signified that IRMKG method successfully retained 
all previous knowledge without any decay, showcasing its 
exceptional continual learning capability. In contrast, the 
HAKE method exhibited the score of 0.977, suggesting a 
minor loss in previously acquired knowledge.

This comparative analysis clearly demonstrates the effi-
cacy of our proposed IRMKG approach in continual learn-
ing. By incorporating synaptic intelligence, which applies a 
regularization based on each embedding component’s his-
torical importance, the IRMKG method efficiently balances 
learning new information and retaining old with enhanced 
adaptability.

4.3  Real robot manipulation test

To examine the effectiveness of our method in physical 
settings, we tested various manipulation tasks with a real 
hybrid robot based on the predictions generated from the 
IRMKG. This experiment involved 46 objects of 39 different 
object classes, as shown in Fig. 6. We considered 10 differ-
ent tasks and created a total of 158 task instances. Notably, 
not all these objects were present in the training set of the 

Fig. 5  Performance of continual learning capability of a IRMKG and b HAKE in six metrics
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robot’s knowledge graph (e.g., the thread-locker glue and the 
wire stripper). In this experiment, we assumed that accurate 
object labels, their components, and the materials of these 
components are provided. Figure 7 shows the hybrid robot 
used in the experiment to perform real manipulation tasks.

To evaluate the performance of our IRMKG method in 
selecting robotic manipulation parameters, we developed a 
rule-based method (denoted as RULE) based on the guid-
ance of expert workers as the comparison benchmark. These 
rules, while informed by expert judgment, do not always 
guarantee task success but rather reflect the operational 
experience of skilled workers. The detailed rules specified 
by expert workers are as follows:

(1) The robot uses a soft gripper for objects made of ceram-
ics, food, and glass, a parallel jaw for other objects, a 
soft suction cup for paper, a hard suction cup for metal 
and glass sheets, and an electric screwdriver for screw 
task.

(2) For the open task, the robot grasps the lid of the object, 
the handle is available for lift and pour tasks, and the 
body or identifiable components for other tasks. For the 
screw task, the operating point is the screw head.

(3) The grasping force is set to be strong for squeeze tasks 
and medium for other tasks like push, pull, and rotate. 
For tasks involving paper or food, the grasping force is 
set low to avoid damage.

We define the following criteria to evaluate the success 
of various tasks performed by robots to compare the effec-
tiveness of the two methods in real-world operations. For 
the grasp task, success is determined to hold a designated 
component of an object without altering its shape. In the lift 
task, the robot needs to raise the object at least 10 cm off the 
ground. The open task requires the robot to lift a component 
of the object, such as a lid, by a minimum of 10 cm without 
damaging the object’s structure. Pour task is judged by the 
robot’s ability to tilt the object by 30 degrees. In the pull and 

Fig. 6  Variety of experimental 
objects in real robot manipula-
tion test

Fig. 7  Hybrid robot in real robot manipulation test
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push tasks, the robot needs to draw the object straightly for 
at least 10 cm while keeping its orientation stable. The rotate 
task involves the robot turning the object by 30 degrees. In 
the squeeze task, the robot is required to grasp and alter the 
shape of the object. Finally, for the screw task, the robot 
must rotate and securely fasten a screw or similar object by 
at least 360°. These criteria provide a comprehensive frame-
work to assess the effectiveness and precision of robotic 
actions in varied manipulation scenarios.

Table 4 shows the success rates of robot manipulation 
tasks for both the IRMKG method and the RULE method 
across various tasks. We find that the IRMKG method 

outperformed the RULE method with a success rate of 0.968 
compared to 0.898 when counting all tasks. On the other 
hand, the RULE method’s failures were mainly attributed 
to its inability to adapt the force output appropriately, lead-
ing to issues like object slippage or inappropriate grasping 
gripper. For example, as depicted in Fig. 8, the application 
of medium force by the RULE method led to slippage during 
the lifting of the stepper motor. Additionally, when perform-
ing an opening operation on a cup with a glass lid, the RULE 
method inappropriately utilized a parallel jaw gripper. A soft 
gripper would be more suitable in this context to prevent 
potential damage to the glass lid. Our findings suggest that 
incorporating inferential capability in robotic manipula-
tion can greatly enhance task success, offering significant 
improvements over traditional rule-based approaches.

4.4  Comparative evaluation of recognition 
processes

To examine the performance of our proposed Recognition 
process (named as Combination Recognition I) in the manip-
ulation framework, we compared it with the recognition pro-
cess in the state-of-the-art semantic grasping method [13] 
(named as Combination Recognition II). Combination Rec-
ognition II integrates Yolo model for object identification, 
PartNet model for semantic segmentation, and DEP model 
for material detection. While in our approach Combination 
Recognition I, we propose to leverage the CLIP model for 

Table 4  Success rates of different methods across various robot 
manipulation tasks

Manipulation task with 
number of tasks

IRMKG RULE

Grasp task (41) 0.951 (39/41) 0.878 (36/41)
Lift task (35) 0.943 (33/35) 0.886 (31/35)
Open task (5) 1.000 ( 5/5) 0.800 ( 4/5)
Pour task (5) 1.000 ( 5/5) 0.800 ( 4/5)
Push task (20) 1.000 (20/20) 0.950 (19/20)
Pull task (20) 1.000 (20/20) 0.950 (19/20)
Rotate task (26) 0.962 (25/26) 0.923 (24/26)
Squeeze task (2) 1.000 ( 2/2) 1.000 ( 2/2)
Screw task (4) 1.000 ( 4/4) 0.750 ( 3/4)
Total tasks (158) 0.968 (153/158) 0.898 (142/158)

Fig. 8  Demonstration of certain robotic manipulation tasks between IRMKG and RULE
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object identification and the PartSLIP model for semantic 
segmentation to reduce the need of training data.

For model training, we utilized the dataset specified in the 
literature associated with Combination Recognition II. We 
used the objects from Section 4.3 as the test case. Among 
our objects, 41 object instances were expected to be cor-
rectly identified by the Recognition process, meaning their 
object labels, components, and materials could be accurately 
recognized. Prior to the experiment, we fine-tuned the iden-
tification method (CLIP) and semantic segmentation method 
(PartSLIP) with a few-shot learning approach using objects 
from our laboratory, while the material detection method 
(DEP) was trained on the MINC2500 dataset [45].

Table 5 presents the comparison results of the success 
rates between two recognition processes on difference tasks. 
Our approach Combination Recognition I achieved a total 
success rate of 0.902. It returned incorrect answers for 2 
objects in object identification, 4 objects in semantic seg-
mentation, and 3 objects in material detection. Notably, even 
an object is misidentified by the CLIP model in Combina-
tion Recognition I, this error may not influence the success-
ful performance of the manipulation task. For example, 
although CLIP incorrectly recognized a flexible screwdriver 
as a pipe, it did not affect the subsequent grasping operation, 
allowing the robot to successfully complete the task.

From Table 5, we also observe that Combination Rec-
ognition II only had a success rate of 0.756 when counting 
all total tasks. Training Yolo and PartNet models require a 
substantial amount of data, and PartNet needs individual 
training for each object class to ensure its effectiveness. In 
contrast, due to the few-shot learning approach, Combina-
tion Recognition I does not require extensive training data 
to adapt CLIP and PartSLIP models to specific industrial 
context, significantly reducing training time and resource 
consumption. The DEP model’s performance varied between 
the two recognition processes, with Combination Recogni-
tion I demonstrating a higher success rate (0.926) compared 
to Combination Recognition II (0.829). This improvement 
is primarily due to Combination Recognition I’s compo-
nent-based detection strategy, which focuses on segmented 
components of objects for material detection, reducing the 
interference from non-relevant components. This targeted 

strategy significantly enhances the detection success rate 
by isolating object features relevant to the task at hand. In 
contrast, Combination Recognition II scans the entire object 
for material properties, proving less effective, particularly 
for objects with heterogeneous material composition across 
different components (e.g., the cup in Fig. 8 with a glass lid 
and a metal body).

In summary, our Recognition process harnesses the power 
of large pre-trained models with a focused, component-based 
detection strategy, making it a more reasonable choice for 
object recognition in human–robot collaboration.

5  Discussion

The key findings from our experiments underscore the 
effectiveness of the IRMKG approach within our industrial 
robotic manipulation framework. Our approach notably 
achieved success rates of 95.7% for gripper type selec-
tion, 98.1% for grasping force application, and 94.9% for 
component grasping—substantially surpassing the perfor-
mance of traditional methods. These results can be primarily 
attributed to the effective use of advanced knowledge graph 
embedding techniques, which significantly enhance the sys-
tem’s ability to process and utilize complex relational data. 
The structured methodology of IRMKG provides a robust 
framework for encoding detailed knowledge about object 
properties and task requirements, enabling precise and rapid 
decision-making capability within the robotic system.

Furthermore, the IRMKG approach exhibited superior 
continual learning capability, demonstrated by its ability 
to integrate new data while significantly improving perfor-
mance on previously learned datasets. Specifically, after 
successive learning sessions, our method increased accu-
racy from 70.1% on the second session dataset to 96.3% 
on the same dataset after the third session, showcasing its 
effectiveness in retaining and enhancing prior knowledge 
without degradation. Additionally, our framework achieved 
a perfect Remember score of 1.0, indicating that it success-
fully preserved all previously acquired knowledge during 
the process of learning new information, thus highlighting 
its exceptional capability in maintaining knowledge consist-
ency. These results demonstrate how the integration of syn-
aptic intelligence has significantly enhanced the framework’s 
continual learning ability, enabling it to dynamically adapt 
and apply new knowledge without degrading performance 
on previously learned tasks.

In practical settings, the robustness of our framework was 
examined through a variety of complex real-world tasks, 
achieving an overall success rate of 96.8%. It showcases the 
practical applicability of our system across diverse opera-
tional scenarios. Moreover, the comparative evaluation of 
recognition processes revealed significant advancements 

Table 5  Success rates of different recognition processes on tasks of 
object identification, semantic segmentation and material detection

Task Combination Recog-
nition I

Combination 
Recogni-
tion II

Object identification 0.951 (39/41) 0.853 (35/41)
Semantic segmentation 0.902 (37/41) 0.756 (31/41)
Material detection 0.926 (38/41) 0.829 (34/41)
All above 0.902 (37/41) 0.756 (31/41)
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in object recognition capability. Utilizing a combination of 
CLIP, PartSLIP, and DEP models, our recognition process 
achieved a total success rate of 90.2%. This superior per-
formance is attributed to our few-shot learning approach 
and a component-based detection strategy that focuses on 
segmented components of objects, thereby reducing inter-
ference and enhancing accuracy. Even in cases of misiden-
tification, such as a flexible screwdriver being mistaken as 
a pipe, the system’s resilience ensured that these errors did 
not affect the overall task performance.

Our framework significantly enhances human–robot col-
laboration in industrial environments through its adaptabil-
ity and continual learning capability. By allowing robots 
to swiftly adjust to new tasks and changes in operations, it 
minimizes the burden on human operators and streamlines 
work flows. This adaptability not only boosts overall pro-
ductivity but also smooths the integration of robotic systems 
into diverse factory settings. The continual learning capabil-
ity of the framework further minimizes the need for frequent 
manual reprogramming and adjustments, thereby reducing 
the overall operational costs of smart manufacturing.

6  Conclusion

In this study, we propose a robotic manipulation framework 
for industrial human–robot collaboration based on contin-
ual knowledge graph embedding. This innovative frame-
work enables hybrid robots to perform industrial tasks with 
less reliance on explicit instructions from human workers. 
Instead, the robots autonomously decide how to manipulate 
various objects by utilizing learned semantic information 
from the operational object and task. It not only allevi-
ates the instructional burden on human workers, but also 
enhances the precision and efficiency of robotic manipula-
tions. Experimental analysis has shown that our approach 
achieves up to 96.8% success rate across various tasks 
involving manipulating commonly seen industrial objects, 
indicating its feasibility and adaptability in real-world envi-
ronments. Our research also demonstrates the importance 
of continual learning in human–robot collaboration. Robots 
continuously adapt to new environments and tasks through 
continual learning while retaining their understanding of 
existing knowledge. This ability enables robots to efficiently 
meet known task requirements and prepare for potential 
future challenges. Moreover, the recognition process within 
our framework does not rely on extensive labeled data, and 
reduces the time and resources needed for data collection 
and processing, which is crucial for the rapid and practical 
deployment of robotic systems in industry.

While our findings are promising, the application of 
our algorithm in real-time scenarios may face certain 

constraints. First, the computational demands of process-
ing complex knowledge graphs and maintaining continual 
learning updates may introduce latency issues, particularly 
in scenarios where immediate robotic response is critical. 
Secondly, while the framework has shown high levels of 
robustness in experimental settings, its performance in 
highly variable real-world environments still faces signifi-
cant challenges. Factors such as unanticipated object prop-
erties, unexpected environmental conditions, and dynamic 
changes in task requirements could affect the accuracy and 
reliability of the system.

In the future, we plan to delve deeper into the complexi-
ties and parameter uncertainties of our knowledge graph 
construction and embedding methods to address these chal-
lenges. To mitigate computational complexity and latency 
issues, we will explore optimization techniques such as 
graph simplification and parallel processing. By streamlin-
ing the knowledge graph structure and leveraging distributed 
computing resources, we aim to reduce processing times 
and enhance the system’s responsiveness in real-time appli-
cations. To tackle parameter uncertainties and enhance the 
robustness of our framework in diverse real-world environ-
ments, we intend to integrate adaptive learning mechanisms 
and context-aware updates into our continual learning pro-
cess. This involves developing more sophisticated models 
capable of dynamically adjusting to new and unforeseen 
variables, such as changes in object properties and envi-
ronmental conditions. Additionally, we will incorporate 
advanced sensor fusion techniques to provide more accurate 
and comprehensive data inputs, and support the system to 
better handle dynamic task requirements.
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