
Citation: Liu, S.; Feng, B.; Bi, Y.; Yu, D.

An Integrated Approach to

Precedence-Constrained Multi-Agent

Task Assignment and Path Finding for

Mobile Robots in Smart

Manufacturing. Appl. Sci. 2024, 14,

3094. https://doi.org/10.3390/

app14073094

Academic Editors: Alessandro Di

Nuovo and Yutaka Ishibashi

Received: 25 January 2024

Revised: 29 February 2024

Accepted: 3 April 2024

Published: 7 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

An Integrated Approach to Precedence-Constrained Multi-Agent
Task Assignment and Path Finding for Mobile Robots in
Smart Manufacturing †

Shuo Liu 1, Bohan Feng 1 , Youyi Bi 1,* and Dan Yu 2

1 University of Michigan—Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University,
800 Dong Chuan Road, Minhang District, Shanghai 200240, China; liushuo123@sjtu.edu.cn (S.L.);
bohan.feng@sjtu.edu.cn (B.F.)

2 College of Astronautics, Nanjing University of Aeronautics and Astronautics, 169 Sheng Tai West Road,
Jiang Ning District, Nanjing 210016, China; yudan@nuaa.edu.cn

* Correspondence: youyi.bi@sjtu.edu.cn
† This paper is an extended version of the conference paper published in 2022 International Mechanical

Engineering Congress & Exposition (IMECE2022), Columbus, OH, USA, 30 October–3 November 2022.

Abstract: Mobile robots play an important role in smart factories, though efficient task assignment
and path planning for these robots still present challenges. In this paper, we propose an integrated
task- and path-planning approach with precedence constrains in smart factories to solve the problem
of reassigning tasks or replanning paths when they are handled separately. Compared to our previous
work, we further improve the Regret-based Search Strategy (RSS) for updating the task insertions,
which can increase the operational efficiency of machining centers and reduce the time consumption.
Moreover, we conduct rigorous experiments in a simulated smart factory with different scales of
robots and tasks. For small-scale problems, we conduct a comprehensive performance analysis of our
proposed methods and NBS-ISPS, the state-of-the-art method in this field. For large-scale problems,
we examine the feasibility of our proposed approach. The results show that our approach takes little
computation time, and it can help reduce the idle time of machining centers and make full use of
these manufacturing resources to improve the overall operational efficiency of smart factories.

Keywords: task assignment; path planning; integrated planning; energy consumption; mobile robot

1. Introduction

A smart factory usually has a series of machining centers, industrial robots, storage
racks, and mobile robots. The mobile robots can assist the industrial robots and machining
centers with complex manufacturing jobs by delivering raw materials and parts and
inspecting the status of production lines [1–3]. As the number of robots and tasks grows,
the scheduling and planning of these robots can become complicated. Therefore, it is
necessary to investigate how to efficiently assign and schedule mobile robots to transport
materials between machining centers and storage racks with the goal of minimizing the
makespan (i.e., the time consumed in transportation and processing) and/or the amount
of consumed energy. Moreover, constraints of temporal precedence usually exist between
sequential manufacturing processes and material delivery operations (e.g., picking up,
delivering, processing, and storing). This type of scheduling and planning problem can
be defined as a precedence-constrained multi-agent task assignment and path finding
(PC-TAPF) problem [4].

In a PC-TAPF problem, a set of tasks and a team of mobile robots are usually given
at the beginning. We first need to assign each task to a suitable robot [5], then a set of
conflict-free paths for robots needs to be generated to ensure the assigned tasks can be
successfully completed [6,7]. Note that precedence constraints can exist between tasks in

Appl. Sci. 2024, 14, 3094. https://doi.org/10.3390/app14073094 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14073094
https://doi.org/10.3390/app14073094
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0001-6834-0867
https://orcid.org/0009-0002-0815-8569
https://orcid.org/0000-0002-2656-4731
https://doi.org/10.3390/app14073094
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14073094?type=check_update&version=1

Appl. Sci. 2024, 14, 3094 2 of 17

a PC-TAPF problem [8]. For example, suppose that A, B, and C are three transportation
tasks, and tasks A and task B must be completed before task C is started. Then, the initial
position of task C can only be determined once the target positions of task A and task B
have been determined in a scenario of flowline production [4]. Therefore, considering that
the precedence constraints of transportation tasks are different between these environments,
it is not appropriate to simply apply the task assignment and path-planning algorithms
developed for warehousing in smart manufacturing.

Various approaches have been developed to solve PC-TAPF problems [9–12]. These ap-
proaches often solve task assignment and path finding separately. The common procedure
is to generate all possible assignments, and then, find a feasible path for each assigned task.
However, many of these approaches either suffer from high complexity in computation,
which leads to difficult deployment in practice, or simply assume the solved paths will
not conflict with each other no matter how the tasks are assigned [13–15]. For example,
Andy Ham [16] proposes a novel application of constraint programming for the job-shop
scheduling problem (JSP) with transbots. Fatemi-Anaraki et al. [17] propose mixed-integer
linear programming and constraint programming approaches for the scheduling of multi-
robot job-shop systems in dynamic environments. These approaches focus on solving task
scheduling problems and may not directly apply to those problems where task assignment
and path finding are coupled.

In recent years, approaches that jointly solve task assignment and path finding
have been emerging. For instance, the CBM (Conflict-Based Min-Cost-Flow) and CBS-
TA (Conflict-Based Search with Optimal Task Assignment) algorithms [18,19] can find
makespan-optimal solutions to task assignment and path finding. Brown et al. [4] proposed
a four-level hierarchical algorithm for computing makespan-optimal solutions to PC-TAPF
problems. However, many of these algorithms are limited by poor scalability, and timeout
failures can happen when the numbers of agents and tasks become relatively large. In
addition, they usually only consider makespan as the single optimization objective.

To tackle these issues, some new methods have been proposed to solve task assignment
and path finding problems in an integrated way [20–22]. For instance, Dasgupta et al. [20]
developed a combined method to generate task sequences by dynamically updating path
costs. When the initially calculated paths need to be changed to avoid collisions, their
associated task sequences will also be reassigned. Chen et al. [21] designed an integrated
method where task assignment choices are determined by actual delivery costs. The actual
path cost is considered when assigning tasks to agents for improving the quality of task
assignment. However, these methods do not consider the precedence constraints between
tasks and may not apply to the scenario of smart manufacturing.

To make up for these shortcomings, in this paper, we propose an integrated task-
and path-planning approach for mobile robots in smart factories. This approach can
solve task assignment and path planning in a joint way while considering the precedence
constraints of tasks and conflict-free constraints of paths. The core ideas of the approach
are the Looking-backward Search Strategy (LSS) and Regret-based Search Strategy (RSS)
developed for the process of task assignment, which can further reduce the total operating
time and the consumed energy of machining centers. Specifically, the Regret-based Search
Strategy (RSS) is inspired by the regret mechanism [23–26] in the task assignment process.
In the regret mechanism, instead of greedily choosing the current best solution, both the
best and the second-best solutions are considered, which facilitates finding a more efficient
solution from a holistic point of view. For example, Zheng et al. [25] used the regret
mechanism to assign tasks to mobile robots considering both the smallest and second
smallest travel distances. Similarly, Dohn et al. [26] used the idea of regret for determining
the weighted sum of the best candidate and second-best candidates to visit each customer
in a homecare staff scheduling problem. Our proposed RSS also adopts this mechanism
and reduces the idle time of machining centers in smart factories.

Our approach preliminarily solves the coupling of task assignment and path planning
while improving the operational efficiency and reducing the energy consumption of the

Appl. Sci. 2024, 14, 3094 3 of 17

smart factory. It can contribute to the practical deployment of multi-mobile robot systems
in smart factories and promote the development of more advanced high-efficiency and
energy-saving manufacturing modes.

This paper is structured as follows. Section 2 introduces our integrated task assignment
and path-planning approach. Section 3 presents a simulation experiment validating the
proposed approach and discusses the experimental results. Section 4 provides a summary
of our work and suggests future research directions.

2. Methods
2.1. Problem Formulation

Solving the PC-TAPF problem in a smart manufacturing environment is defined
as determining how to optimally assign tasks with precedence constraints and generate
conflict-free paths for each moving robot. In our study, the environment is represented as a
grid map consisting of cells with a unit length, and an index incrementally numbered from
left to right and top to bottom is used as the position coordinate of each cell. For example,
in a 5× 10-cell grid, the cell in the upper left corner is indexed with 0, while that in the
lower right corner is indexed with 49. Thus, in path finding, graph-based search methods
such as CA* [27] can be adopted.

Let Mi = {1, . . . , m} be a set of optional machining centers for task i when operating
task i. This setting considers a scenario where several machining centers are available for a
manufacturing job, and generally, the energy consumed by different machining centers and
the distance between these machining centers and mobile robots are different, resulting
in various total time and energy consumption. For example, to process task t1, the energy
consumption of machining center m1, m2 is ea, eb, respectively (in most cases ea ̸= eb). The
time taken to travel t1 to the machining center m1, m2 is tc, td, respectively (in most cases,
tc ̸= td). In this way, for task t1, there is coupling between the energy consumed in choosing
which machining center to process and the time taken to choose which robot to transport.
In fact, the energy consumption is not necessarily smaller when the transportation time
is shorter. For example, when ea > eb and tc < td, although the energy consumption of
machining center m1 is larger than m2, it will take less time to transport t1 to machining
center m1 compared to m2. Thus, it is important for a task to choose the proper machining
center to save the time and energy. This means that the goal positions of some tasks are
unknown before the final task assignment, in which these tasks will eventually be assigned
to appropriate machining centers considering both the time and energy efficiency.

Let T = {1, . . . , n} represent a set of tasks in the smart factory in which the cargo (e.g.,
materials or parts) is transported from starting positions to designated positions. Each
task i ∈ T has a given tuple with seven attributes,

(
typei, spi, gpi, sti, gti, parenti, Mi

)
. typei

is the type of task i, and typei = 0 represents that in task i, the cargo will be transported
from a storage zone or machining center to another machining center (note here that the
goal position of task i is still unknown), while typei = 1 represents that the cargo will be
transported from a machining center to a storage zone (note here that the goal position
of task i is known because we assume that the storage location of each part is known and
fixed). These constraints are defined in Equations (7)–(9) in the following formulation.

Given a grid map with g cells, spi, gpiϵ{−1, . . . , g− 1} are the starting and goal posi-
tions of task i, respectively, which equals −1 when the starting or goal position is unknown.
sti, gtiϵ{−1} ∪N are the starting and finishing times of task i, respectively, which equals−1
when either one is unknown. parenti is the parent task of task i, and it must be completed
before starting task i. Here, we only consider a basic case where each task has one parent.
R = {1, . . . , a} represents the set of robots for transporting tasks. sj denotes the starting
position for each robot j ∈ R. The starting positions of all robots are randomly assigned in
the docking zone at the beginning. In this study, the robots are assumed to be able to turn
around in place; thus, robot heading is not considered in task assignment.

In order to transport task i, the initial and goal positions of task i need to be determined
first through the task assignment process. Then, robot j moves to the starting position spi

Appl. Sci. 2024, 14, 3094 4 of 17

of the task i and transports the cargo to the goal position gpi. During this period, time is set
to be discretized into unit time steps, and a robot can move over one cell in one time step.
In the path finding process, two types of collisions need to be avoided: vertex collision and
edge collision. The former states that two robots should not occupy the same cell at the
same time, and the latter means that two robots should not move along adjacent cells in
opposite directions at the same time.

Let P = {sp1, · · · , spn, gp1, · · · , gpn} be all possible positions that robot j can ar-
rive at. TAjp : R× P→ {0, 0.5}, j ∈ R, p ∈ P represents a task assignment mapping ta-
ble that maps the indices of robot j and the loading or unloading position p to a fixed
value, which equals 0.5 if and only if robot j ∈ R has to reach the position p ∈ P.
TAjspi

+ TAjgpi
= 1 means that task i is assigned to robot j. The optimization vari-

able MTkt : M× Time→ {0, i}, k ∈ M, t ∈ Time, i ∈ T represents a processing mapping
table, which equals i if and only if the machining center k is processing task i at time t.
MTkt = 0 implies that machining center k is idle at time t. ct

j denotes the number of loading
tasks of robot j at time t. locj(t) denotes the location of robot j at time t. tj denotes the time
spent by robot j transporting all the tasks assigned to it. tk and ek denote the time spent and
energy consumed by machining center k, respectively, after completing all tasks assigned
to it.

The problem formulation is given in Equations (1)–(12). In Equation (1), PT is the sum
of the maximum time spent by all robots transporting all tasks (i.e., max

j∈R
tj, the maximum

transportation time), and the maximum time spent by all machining centers to process all
tasks (i.e., max

k∈M
tk, the maximum processing time). PE is the total energy consumed when

machining centers are operating, (i.e., ∑m
k=1 ek, the total processing energy). The weighted

sum method is used to convert the multi-objective functions into a single function. wt
and we represent the weight of transportation time and processing time, and the weight of
energy consumed by machining centers, respectively. The overall optimization goal is to
minimize F subject to the constraints in Equations (2)–(12).

Minimize

F = wtPT + wePE = wt

(
max
j∈R

tj + max
k∈M

tk

)
+ we∑m

k=1 ek (1)

Subject to
TAjspi

+ TAjgpi
∈ {0, 1}, ∀i ∈ T, ∀j ∈ R (2)

∑a
j=1 TAjspi

+TAjgpi
∈ {0, 1}, ∀i ∈ T (3)

ct
j ∈ {0, 1}, ∀t, ∀j ∈ R (4)

locj(t) ̸= locj′(t), ∀j, j′ ∈ R, j ̸= j′, ∀t (5){
locj(t), locj(t + 1)

}
̸=

{
locj′(t + 1), locj′(t)

}
, ∀j, j′ ∈ R, j ̸= j′, ∀t (6)

gpi = −1, ∀i ∈ T s.t. typei = 0 (7)

gpi ≥ 0, ∀i ∈ T s.t. typei = 1 (8)

spi ≥ 0, sti = 0, gti = −1, parenti = ϕ, ∀i ∈ layer1 (9)

spw ≥ 0, spw′ = −1, ∃w, w′ ∈ layerl , l ≥ 2, w ∈ T, w ̸= w′, ∀typeparentw′ = 0 (10)

stw = −1, ∀w ∈ layerl , l ≥ 2, w ∈ T (11)

parentw = i, ∃i ∈ layerl−1, ∀w ∈ layerl , l ≥ 2, w ∈ T (12)

Equation (2) indicates that the loading and unloading processes of a task are performed
by the same robot. Equation (3) means that a task can only be transported by exactly
one robot. Equation (4) implies that each robot is capable of transporting at most one

Appl. Sci. 2024, 14, 3094 5 of 17

task at a time, i.e., a robot cannot transport multiple tasks simultaneously. Equation (5)
implies there is no vertex collisions between robots. Equation (6) implies that there is
no edge collision between robots. Equations (7)–(12) describe the constraints of certain
task attributes when considering the precedence of tasks, and the details are described
below. The time complexity is O(mnabd), where m, n, a represent the number of optional
machining centers, tasks, and robots, b is the branching factor of the tree, and d is the depth
of the goal node.

Figure 1 shows an illustrative example of a task queue organized in three layers
consisting of five tasks with precedence constraints. job1 represents the manufacturing
process of the gear, which can be roughly divided into three tasks—task t1: machining the
outer circle and inner hole, where the robot takes the steel blank from the raw material
area and transports it to one of the lathe machines; task t2: machining the teeth, where
the robot transports the workpiece from task t1 to the gear shaping machine; task t3:
warehousing, where the robot transports the workpieces from task t2 to the finished
product area. Similarly, job2 represents the manufacturing process of the shaft, which can
be roughly divided into two tasks: machining the shaft and warehousing. Obviously, task
t2 must be carried out after t1 is completed, while t1 and t4 can be started at the same time.
And task t2 is the parent of t1. In addition, we use l(l ≥ 1) to describe the lth layer of the
task queue, and each layer is a set of tasks in which tasks in the same layer do not need to
follow specific sequences, while tasks in two consecutive layers need to be carried out one
after another.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 18

do not need to follow specific sequences, while tasks in two consecutive layers need to be

carried out one after another.

Figure 1. An illustrative example of a task queue organized in three layers consisting of five tasks.

𝑗𝑜𝑏1 and 𝑗𝑜𝑏2 represent the manufacturing processes of the gear and shaft, respectively.

Equations (7) and (8) indicate that the goal position is unknown for task 𝑖 when

𝑡𝑦𝑝𝑒𝑖 = 0 and is known for task 𝑖 when 𝑡𝑦𝑝𝑒𝑖 = 1. This is because the task with 𝑡𝑦𝑝𝑒𝑖 =

0 needs to select a specific machining center, and its goal position can only be determined

after the planning process. The goal position of task with t𝑦𝑝𝑒𝑖 = 1 has to be known so

that it can be transported to a designated storage zone. Equation (9) indicates that for all

tasks in the base layer (𝑙 = 1), their starting positions should be known, their starting times

are set to 0, their finishing times are unknown initially, and can only be calculated when

these tasks are assigned, and all tasks in the base layer are pioneers without parent tasks.

Tasks in 𝑙𝑎𝑦𝑒𝑟𝑙 (𝑙 ≥ 2) need to be assigned after the completion of their

corresponding parent tasks in 𝑙𝑎𝑦𝑒𝑟𝑙−1. This means that the attributes of tasks (e.g., the

starting time and the parent task) in 𝑙𝑎𝑦𝑒𝑟𝑙 are not exactly the same as those in 𝑙𝑎𝑦𝑒𝑟𝑙−1

due to the precedence constraints. Equation (10) describes that the starting positions of

some tasks are known, while others are unknown. In the latter case, the starting position

of the current task depends on the goal position of its corresponding parent task. That is,

the starting position of this current task will be known only after its parent task 𝑖 with

𝑡𝑦𝑝𝑒𝑖 = 0 is assigned. Likewise, Equation (11) requires that a task can be started only after

its corresponding parent task is completed. Equation (12) represents a task in

𝑙𝑎𝑦𝑒𝑟𝑙 (𝑙 ≥ 2) that has one parent task when the jobs have not been completed in 𝑙𝑎𝑦𝑒𝑟𝑙−1.

2.2. Integrated Task and Path Planning

Figure 2 shows the overall workflow of the proposed approach. The tasks are first

organized into a queue by layer according to their precedence constraints, as shown in

Figure 1. Then, tasks are selected from the built task queue in increasing order of

precedence layers, i.e., tasks from the base layer are extracted first. For each selected task

𝑖, process planning is first performed by traversing all available machining centers. For

each possible machining center 𝑘, its position is set as the goal position of task 𝑖. The

energy consumed by the machining center 𝑘 and the machining time can be obtained

from the initial settings. Then, CA* is used to generate a reasonable path for robot 𝑗

ensuring that no collision occurs with other planned paths.

Figure 1. An illustrative example of a task queue organized in three layers consisting of five tasks.
job1 and job2 represent the manufacturing processes of the gear and shaft, respectively.

Equations (7) and (8) indicate that the goal position is unknown for task i when
typei = 0 and is known for task i when typei = 1. This is because the task with typei = 0
needs to select a specific machining center, and its goal position can only be determined
after the planning process. The goal position of task with typei = 1 has to be known so that
it can be transported to a designated storage zone. Equation (9) indicates that for all tasks
in the base layer (l = 1), their starting positions should be known, their starting times are
set to 0, their finishing times are unknown initially, and can only be calculated when these
tasks are assigned, and all tasks in the base layer are pioneers without parent tasks.

Tasks in layerl (l ≥ 2) need to be assigned after the completion of their corresponding
parent tasks in layerl−1. This means that the attributes of tasks (e.g., the starting time and
the parent task) in layerl are not exactly the same as those in layerl−1 due to the precedence
constraints. Equation (10) describes that the starting positions of some tasks are known,
while others are unknown. In the latter case, the starting position of the current task
depends on the goal position of its corresponding parent task. That is, the starting position
of this current task will be known only after its parent task i with typei = 0 is assigned.
Likewise, Equation (11) requires that a task can be started only after its corresponding
parent task is completed. Equation (12) represents a task in layerl(l ≥ 2) that has one parent
task when the jobs have not been completed in layerl−1.

Appl. Sci. 2024, 14, 3094 6 of 17

2.2. Integrated Task and Path Planning

Figure 2 shows the overall workflow of the proposed approach. The tasks are first
organized into a queue by layer according to their precedence constraints, as shown in
Figure 1. Then, tasks are selected from the built task queue in increasing order of precedence
layers, i.e., tasks from the base layer are extracted first. For each selected task i, process
planning is first performed by traversing all available machining centers. For each possible
machining center k, its position is set as the goal position of task i. The energy consumed
by the machining center k and the machining time can be obtained from the initial settings.
Then, CA* is used to generate a reasonable path for robot j ensuring that no collision occurs
with other planned paths.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 18

Figure 2. The overall workflow of the integrated task and path planning approach. CA* [27] is

used in the path planning process.

The time consumption and energy consumption for task processing and

transportation are taken as the total consumption 𝑇𝐶 and stored in the Assignment Heap

𝐻 in increasing order (i.e., the assignment with least total consumption is at the top of the

heap). The Assignment Heap 𝐻 contains all potential assignments of task 𝑖 to each

available robot and machining center when 𝑡𝑦𝑝𝑒𝑖 = 0. The greedy algorithm is then used

to select the optimal task assignment from 𝐻 and the loop cycle continues until all tasks

are successfully assigned. To reduce unnecessary waiting time for machining centers in

the task assignment process, we propose the Looking-backward Search Strategy (LSS) and

Regret-based Search Strategy (RSS), which are explained in the following subsections.

2.2.1. Looking-Backward Search Strategy (LSS)

Traditionally, a task will be assigned to a machining center at the time point right

after the last task assigned to this machining center is finished. This treatment is named

the Baseline method (or the traditional method) in our study, and may lead to unnecessary

waiting time since the time periods before starting the last assigned task might be free for

inserting the current task. Thus, we propose the Looking-backward Search Strategy (LSS)

to reduce the operating time. The basic idea is to search the available time periods before

the starting time of the last assigned task (i.e., looking backward) and try to identify

whether the current task can fit in any of those time periods.

Algorithm 1 shows the pseudo-code for updating the processing sequence via LSS.

𝑡𝑘
𝑖 denotes the time taken for machining center 𝑘 to process task 𝑖. 𝑡𝑗

𝑖 denotes the time

when robot 𝑗 finishes the transporting task 𝑖 to the machining center 𝑘 , and 𝑡𝑐𝑢𝑟_𝑚𝑎𝑥

represents the current total time taken by the machining center 𝑘 to complete the last task

that was assigned. Equation (13) describes ∆𝑡𝑖, the search space of inserting task 𝑖 (i.e.,

the feasible time periods) when the looking-backward search is performed. Specifically, a

counter function count is performed to keep track of the time periods when the machining

center 𝑘 is idle. Here the greedy search strategy is used, which means that once we find

the first feasible time period insert, the search will stop and the identified period will be

the time period for machining center 𝑘 to process task 𝑖.

 ∆𝑡𝑖 = (𝑡𝑗
𝑖 , 𝑡𝑐𝑢𝑟_𝑚𝑎𝑥) (13)

Algorithm 1 Update Processing Sequence via LSS [28]

Input: current task 𝑖, robot 𝑗, machining center 𝑘

Output: processing mapping table 𝑀𝑇𝑘𝑡

Figure 2. The overall workflow of the integrated task and path planning approach. CA* [27] is used
in the path planning process.

The time consumption and energy consumption for task processing and transportation
are taken as the total consumption TC and stored in the Assignment Heap H in increasing
order (i.e., the assignment with least total consumption is at the top of the heap). The
Assignment Heap H contains all potential assignments of task i to each available robot
and machining center when typei = 0. The greedy algorithm is then used to select the
optimal task assignment from H and the loop cycle continues until all tasks are successfully
assigned. To reduce unnecessary waiting time for machining centers in the task assignment
process, we propose the Looking-backward Search Strategy (LSS) and Regret-based Search
Strategy (RSS), which are explained in the following subsections.

2.2.1. Looking-Backward Search Strategy (LSS)

Traditionally, a task will be assigned to a machining center at the time point right after
the last task assigned to this machining center is finished. This treatment is named the
Baseline method (or the traditional method) in our study, and may lead to unnecessary
waiting time since the time periods before starting the last assigned task might be free
for inserting the current task. Thus, we propose the Looking-backward Search Strategy
(LSS) to reduce the operating time. The basic idea is to search the available time periods
before the starting time of the last assigned task (i.e., looking backward) and try to identify
whether the current task can fit in any of those time periods.

Algorithm 1 shows the pseudo-code for updating the processing sequence via LSS. ti
k

denotes the time taken for machining center k to process task i. ti
j denotes the time when

robot j finishes the transporting task i to the machining center k, and tcur_max represents
the current total time taken by the machining center k to complete the last task that was
assigned. Equation (13) describes ∆ti, the search space of inserting task i (i.e., the feasible
time periods) when the looking-backward search is performed. Specifically, a counter
function count is performed to keep track of the time periods when the machining center k

Appl. Sci. 2024, 14, 3094 7 of 17

is idle. Here the greedy search strategy is used, which means that once we find the first
feasible time period insert, the search will stop and the identified period will be the time
period for machining center k to process task i.

∆ti =
(

ti
j, tcur_max

)
(13)

Algorithm 1 Update Processing Sequence via LSS [28]

Input: current task i, robot j, machining center k
Output: processing mapping table MTkt

1: Initialize count = 0
2: for all t ∈

(
ti
j, tcur_max

)
do

3: if MTkt == 0 then
4: count++
5: if count == ti

k then
6: for all t′ ∈

(
t, t + ti

k − 1
)

do

7: MTkt′ = i
8: end for
9: end if
10: end if
11: if MTkt! = 0 then
12: count = 0
13: end if
14: end for

Figure 3 shows an example case of updating the task assignment based on LSS. The
gray boxes represent the time periods occupied by assigned tasks (e.g., tasks a, b, c ∈ T)
and they cannot be replaced with new tasks. The yellow box represents the insertion time
period using the traditional selection method (i.e., the Baseline method). As shown in
Figure 3, it is right after the occupied time of the assigned task c. In other words, the
traditional method does not take into account the idle time of the machining center, but
simply adds the needed time period of processing the new task to the end of the machining
center’s processing queue. The blue box represents the first feasible insertion time period
following LSS, while the white boxes represent unoccupied time periods based on LSS. The
search space of the insertion time is (ti

j, tcur_max). Obviously, the new insertion strategy can
reduce the idle time for the machining center, and the total time and energy consumption
can be saved.

2.2.2. Regret-Based Search Strategy (RSS)

Note that LSS will stop searching after finding the first feasible time period for the
current task i. This greedy strategy may prevent the next task i′ from being inserted
backward since the identified time period to process task i may partially interfere with the
needed time period to process the next task i′. To address this issue, we propose a Regret-
based Search Strategy (RSS). The basic idea is that when we perform the task insertion of
the current task i, the algorithm also considers leaving enough space for inserting the next
task i′, i.e., thinking one step ahead.

Algorithm 2 shows the pseudo-code for updating the task assignment sequence via
RSS. The search space is the same as Equation (13). The core ideas are as follows.

1. An array inserts = {inserts0, inserts1, . . .} is defined to save all feasible time periods
that allow the insertion of task i. Note that the time period insert mentioned in
Figure 3 is the same as inserts when the size of inserts is 1.

2. Then, the insertion of the next task i′ is considered by filtering out the time periods
that allow the insertion of task i′, which can be accessed by the index regret.

Appl. Sci. 2024, 14, 3094 8 of 17

3. Finally, the final time period inserts f inal of task i is determinized depending on which
of the two cases shown in Figure 4 applies. The details of the two cases are provided
as follows.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 18

1: Initialize 𝑐𝑜𝑢𝑛𝑡 = 0

2: for all 𝑡 ∈ (𝑡𝑗
𝑖 , 𝑡𝑐𝑢𝑟_𝑚𝑎𝑥) do

3: if 𝑀𝑇𝑘𝑡 == 0 then

4: 𝑐𝑜𝑢𝑛𝑡++

5: if 𝑐𝑜𝑢𝑛𝑡 == 𝑡𝑘
𝑖 then

6: for all 𝑡′ ∈ (𝑡, 𝑡 + 𝑡𝑘
𝑖 − 1) do

7: 𝑀𝑇𝑘𝑡′ =𝑖

8: end for

9: end if

10: end if

11: if 𝑀𝑇𝑘𝑡! = 0 then

12: 𝑐𝑜𝑢𝑛𝑡 = 0

13: end if

14: end for

Figure 3 shows an example case of updating the task assignment based on LSS. The

gray boxes represent the time periods occupied by assigned tasks (e.g., tasks 𝑎, 𝑏, 𝑐 ∈ 𝑇)

and they cannot be replaced with new tasks. The yellow box represents the insertion time

period using the traditional selection method (i.e., the Baseline method). As shown in

Figure 3, it is right after the occupied time of the assigned task 𝑐. In other words, the

traditional method does not take into account the idle time of the machining center, but

simply adds the needed time period of processing the new task to the end of the

machining center’s processing queue. The blue box represents the first feasible insertion

time period following LSS, while the white boxes represent unoccupied time periods

based on LSS. The search space of the insertion time is (𝑡𝑗
𝑖 , 𝑡𝑐𝑢𝑟_𝑚𝑎𝑥). Obviously, the new

insertion strategy can reduce the idle time for the machining center, and the total time and

energy consumption can be saved.

Figure 3. An illustration of the Looking-backward Search Strategy (LSS) [28].

2.2.2. Regret-Based Search Strategy (RSS)

Note that LSS will stop searching after finding the first feasible time period for the

current task 𝑖 . This greedy strategy may prevent the next task 𝑖′ from being inserted

backward since the identified time period to process task 𝑖 may partially interfere with

the needed time period to process the next task 𝑖′. To address this issue, we propose a

Regret-based Search Strategy (RSS). The basic idea is that when we perform the task

insertion of the current task 𝑖 , the algorithm also considers leaving enough space for

inserting the next task 𝑖′, i.e., thinking one step ahead.

Figure 3. An illustration of the Looking-backward Search Strategy (LSS) [28].

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 18

Figure 4. An illustration of the Regret-based Search Strategy (RSS) for the cases when the identified

time periods for inserting task 𝑖 (a) allow and (b) do not allow the insertion of the next task 𝑖′ [28].

In Figure 4a, the array 𝑖𝑛𝑠𝑒𝑟𝑡𝑠 = {𝑖𝑛𝑠𝑒𝑟𝑡𝑠0 , 𝑖𝑛𝑠𝑒𝑟𝑡𝑠1 , 𝑖𝑛𝑠𝑒𝑟𝑡𝑠2 } saves all time

periods that allow the insertion of task 𝑖, while 𝑖𝑛𝑠𝑒𝑟𝑡𝑠𝑟𝑒𝑔𝑟𝑒𝑡 = {𝑖𝑛𝑠𝑒𝑟𝑡𝑠0, 𝑖𝑛𝑠𝑒𝑟𝑡𝑠1} stores

all time periods that allow the insertion of both tasks 𝑖 and 𝑖′. Then, 𝑖𝑛𝑠𝑒𝑟𝑡𝑓𝑖𝑛𝑎𝑙 can be

selected following Equation (14). And in Figure 4a, 𝑖𝑛𝑠𝑒𝑟𝑡𝑠𝑓𝑖𝑛𝑎𝑙 = 𝑖𝑛𝑠𝑒𝑟𝑡𝑠2, and 𝑖𝑛𝑠𝑒𝑟𝑡𝑠0

will be reserved for the next task 𝑖′. Note that the final insertion time period for task 𝑖′

will be assigned in the next loop.

𝑖𝑛𝑠𝑒𝑟𝑡𝑓𝑖𝑛𝑎𝑙 = min{(𝑖𝑛𝑠𝑒𝑟𝑡𝑠𝑟𝑒𝑔𝑟𝑒𝑡𝑢
− 𝑡𝑘

𝑖′
) + (𝑖𝑛𝑠𝑒𝑟𝑡𝑠𝑣 − 𝑡𝑘

𝑖)},

𝑖𝑛𝑠𝑒𝑟𝑡𝑠𝑟𝑒𝑔𝑟𝑒𝑡𝑢
∈ 𝑖𝑛𝑠𝑒𝑟𝑡𝑠𝑟𝑒𝑔𝑟𝑒𝑡, 𝑖𝑛𝑠𝑒𝑟𝑡𝑠𝑣 ∈ 𝑖𝑛𝑠𝑒𝑟𝑡𝑠

(14)

In Figure 4b, we know that 𝑡𝑘
𝑖′

> 𝑖𝑛𝑠𝑒𝑟𝑡𝑠𝑣, ∀𝑖𝑛𝑠𝑒𝑟𝑡𝑠𝑣 ∈ 𝑖𝑛𝑠𝑒𝑟𝑡𝑠. In this case, we will

select one from 𝑖𝑛𝑠𝑒𝑟𝑡𝑠 by skipping the time period closest to 𝑡𝑗
𝑖 (i.e., 𝑖𝑛𝑠𝑒𝑟𝑡𝑠0) and also

making its time margin as small as possible (see Equation (15)).

𝑖𝑛𝑠𝑒𝑟𝑡𝑓𝑖𝑛𝑎𝑙 = min(𝑖𝑛𝑠𝑒𝑟𝑡𝑠𝑣 − 𝑡𝑘
𝑖) , 𝑖𝑛𝑠𝑒𝑟𝑡𝑠𝑣 ∈ 𝑖𝑛𝑠𝑒𝑟𝑡𝑠, 𝑖𝑛𝑠𝑒𝑟𝑡𝑓𝑖𝑛𝑎𝑙 ≠ 𝑖𝑛𝑠𝑒𝑟𝑡𝑠0 (15)

This treatment results from considering if the next task 𝑖′ arrives at the machining

center earlier than 𝑡𝑗
𝑖, and the search space of the insertion time for task 𝑖′ will expand to

∆𝑡𝑖′ = (𝑡𝑗′
𝑖′

, 𝑡𝑐𝑢𝑟_𝑚𝑎𝑥) . The expanded search space (i.e., the left-side blue dashed box in

Figure 4b) and the original search space 𝑖𝑛𝑠𝑒𝑟𝑡𝑠0 are likely to form a larger space that may

allow the insertion of the next task 𝑖′, and the time consumption can be further reduced.

Following the above procedures, the final selected time period 𝑖𝑛𝑠𝑒𝑟𝑡𝑠𝑓𝑖𝑛𝑎𝑙 for task 𝑖 is

𝑖𝑛𝑠𝑒𝑟𝑡𝑠2 , as shown in Figure 4b, and the final insertion time period for task 𝑖′ will be

assigned in the next loop.

3. Results of Simulation Experiments and Discussion

Figure 4. An illustration of the Regret-based Search Strategy (RSS) for the cases when the identified
time periods for inserting task i (a) allow and (b) do not allow the insertion of the next task i′ [28].

Appl. Sci. 2024, 14, 3094 9 of 17

Algorithm 2 Update Processing Sequence via RSS [28]

Input: current task i, next task i′, robot j, machining center k
Output: processing mapping table MTkt

1: Initialize inserts = ϕ

2: for all t ∈ (ti
j, tcur_max) do

3: inserts←Find all feasible time periods of task i
4: end for
5: //regret
6: insertsregret ← Filter time periods
7: ifinsertsregret = ϕthen
8: inserts f inal ← max (inserts)
9: end if
10: if insertsregret! = ϕ then
11: inserts f inal ← min (insertsregret)
12: end if
13: //insert
14: for all t ∈ (inserts f inal , inserts f inal + ti

k − 1) do
15: MTkt = i
16: end for

Figure 4a,b illustrate the RSS method for the cases when the identified time periods
for inserting task i allow and do not allow the insertion of the next task i′, respectively. The
blue boxes represent the time periods occupied by assigned tasks (e.g., tasks a, b, c ∈ T),
and they cannot be replaced with new tasks. The yellow boxes represent the processing
time of tasks i and i′. The blue solid boxes represent all feasible insertion time periods
following RSS, while the blue dashed box represents the possible expanded time period
when the next task i′ arrives earlier than ti

j. The search spaces of the insertion times for the

current task i and the next task i′ are
(

ti
j, tcur_max

)
and

(
ti′

j′ , tcur_max

)
, respectively. Here, the

time margin is defined as the difference between a time period that allows the insertion of
a task and the actual needed processing time for that task (i.e., time margin = inserts2 − ti

k;
see the zoomed-in part of Figure 4a).

In Figure 4a, the array inserts = {inserts0, inserts1, inserts2} saves all time periods that
allow the insertion of task i, while insertsregret = {inserts0, inserts1} stores all time periods
that allow the insertion of both tasks i and i′. Then, insert f inal can be selected following
Equation (14). And in Figure 4a, inserts f inal = inserts2, and inserts0 will be reserved for
the next task i′. Note that the final insertion time period for task i′ will be assigned in the
next loop.

insert f inal = min
{(

insertsregretu − ti′
k

)
+

(
insertsv − ti

k
)}

,
insertsregretu ∈ insertsregret, insertsv ∈ inserts

(14)

In Figure 4b, we know that ti′
k > insertsv, ∀insertsv ∈ inserts. In this case, we will

select one from inserts by skipping the time period closest to ti
j (i.e., inserts0) and also

making its time margin as small as possible (see Equation (15)).

insert f inal = min
(

insertsv − ti
k

)
, insertsv ∈ inserts, insert f inal ̸= inserts0 (15)

This treatment results from considering if the next task i′ arrives at the machining
center earlier than ti

j, and the search space of the insertion time for task i′ will expand

to ∆ti′ =
(

ti′
j′ , tcur_max

)
. The expanded search space (i.e., the left-side blue dashed box in

Figure 4b) and the original search space inserts0 are likely to form a larger space that may
allow the insertion of the next task i′, and the time consumption can be further reduced.
Following the above procedures, the final selected time period inserts f inal for task i is

Appl. Sci. 2024, 14, 3094 10 of 17

inserts2, as shown in Figure 4b, and the final insertion time period for task i′ will be
assigned in the next loop.

3. Results of Simulation Experiments and Discussion
3.1. Experiment Settings

Figure 5 shows the layout of a smart factory represented by a grid map (13 × 18 cells)
including machining centers (dark green), corridors (white), docking zones for mobile
robots (light blue), and storage zones (dark gray). The storage zones are specified as raw
material areas (A1, A2), semi-finished product areas (B1, B2), and finished product areas
(C1, C2). The mobile robots (dark blue circles) can perform loading or unloading tasks in
the light green cells. After completing all tasks assigned to it, the robot will stop in the
docking area to avoid collisions with other robots that are still in working mode.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 18

3.1. Experiment Settings

Figure 5 shows the layout of a smart factory represented by a grid map (13 × 18 cells)

including machining centers (dark green), corridors (white), docking zones for mobile

robots (light blue), and storage zones (dark gray). The storage zones are specified as raw

material areas (𝐴1, 𝐴2), semi-finished product areas (𝐵1, 𝐵2), and finished product areas

(𝐶1, 𝐶2). The mobile robots (dark blue circles) can perform loading or unloading tasks in

the light green cells. After completing all tasks assigned to it, the robot will stop in the

docking area to avoid collisions with other robots that are still in working mode.

After receiving the starting signal, a mobile robot leaves from the docking area, goes

to the raw material area to load the cargo, and transports the cargo to a machining center.

Then, the machining center starts to process it. After that, this robot will be assigned to

other transport tasks. When the machining center finishes the assigned task, the output

(e.g., processed parts) will then be picked up by one of the available robots and

transported to another machining center or a shelf in the storage zone. This process will

iterate until all tasks are completed.

Figure 5. Layout of a simulated smart factory [28].

We examined the performance of our approach in this working scenario with

different numbers of robots and tasks. Moreover, we developed a simulation platform in

MATLAB R2023a. This platform can visualize the layout of the machining centers, storage

zones, and docking zones of the smart factory, and mark out the starting positions and

goal positions of all the transportation tasks. It can also dynamically display the moving

paths of the robot team to verify the feasibility of the proposed approach (e.g., we can

observe whether two robots will collide with each other when performing tasks).

Usually, the quantity of transportation tasks that can be completed per work shift in

a smart factory is limited by the processing capability of the machining centers. Therefore,

we tested 10 to 1000 tasks in this experiment. The initial positions of mobile robots and

the starting and goal positions of tasks are randomly assigned. The assignment of weights

reflects the decision maker’s preference for these objectives. In this experiment, we set 𝑤𝑡

to 0.6 or 0.4 and 𝑤𝑒 = 1 − 𝑤𝑡. The energy consumed by mobile robots is not considered

since it is usually proportional to the transportation time, and is relatively insignificant

compared to the energy consumed by machining centers.

3.2. Performance Analysis with Small-Scale Problem

3.2.1. Analysis of Success Rate in Generating Feasible Solutions

We first tested the success rate of the proposed approach with small-scale problems.

Here, the success rate is defined as the number of experiments with feasible solutions for

task assignment and the path plans generated divided by the total number of experiments

tested. A total of 20 sets of experiments with the quantity of tasks varying from 10 to 100

Figure 5. Layout of a simulated smart factory [28].

After receiving the starting signal, a mobile robot leaves from the docking area, goes
to the raw material area to load the cargo, and transports the cargo to a machining center.
Then, the machining center starts to process it. After that, this robot will be assigned to
other transport tasks. When the machining center finishes the assigned task, the output
(e.g., processed parts) will then be picked up by one of the available robots and transported
to another machining center or a shelf in the storage zone. This process will iterate until all
tasks are completed.

We examined the performance of our approach in this working scenario with different
numbers of robots and tasks. Moreover, we developed a simulation platform in MATLAB
R2023a. This platform can visualize the layout of the machining centers, storage zones, and
docking zones of the smart factory, and mark out the starting positions and goal positions
of all the transportation tasks. It can also dynamically display the moving paths of the
robot team to verify the feasibility of the proposed approach (e.g., we can observe whether
two robots will collide with each other when performing tasks).

Usually, the quantity of transportation tasks that can be completed per work shift in a
smart factory is limited by the processing capability of the machining centers. Therefore,
we tested 10 to 1000 tasks in this experiment. The initial positions of mobile robots and
the starting and goal positions of tasks are randomly assigned. The assignment of weights
reflects the decision maker’s preference for these objectives. In this experiment, we set wt
to 0.6 or 0.4 and we = 1− wt. The energy consumed by mobile robots is not considered
since it is usually proportional to the transportation time, and is relatively insignificant
compared to the energy consumed by machining centers.

Appl. Sci. 2024, 14, 3094 11 of 17

3.2. Performance Analysis with Small-Scale Problem
3.2.1. Analysis of Success Rate in Generating Feasible Solutions

We first tested the success rate of the proposed approach with small-scale problems.
Here, the success rate is defined as the number of experiments with feasible solutions for
task assignment and the path plans generated divided by the total number of experiments
tested. A total of 20 sets of experiments with the quantity of tasks varying from 10 to
100 and with 5 or 10 robots were generated. The time spent and energy consumed by
machining centers for each task were randomly set as constants.

Figure 6 shows the relationship between success rate and the number of tasks with
different numbers of robots and time limits when comparing our proposed methods
with a popular method for PC-TAPF problems: Sequential Next-Best Assignment Search-
Incremental Slack-Prioritized Search (NBS-ISPS) [4]. In NBS-ISPS, task assignment and
path planning were solved by the NBS solver and ISPS solver, respectively, and inde-
pendently. The time limit means the maximum allowed runtime of the optimization
solver in NBS-ISPS.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 18

and with 5 or 10 robots were generated. The time spent and energy consumed by

machining centers for each task were randomly set as constants.

Figure 6 shows the relationship between success rate and the number of tasks with

different numbers of robots and time limits when comparing our proposed methods with

a popular method for PC-TAPF problems: Sequential Next-Best Assignment Search-

Incremental Slack-Prioritized Search (NBS-ISPS) [4]. In NBS-ISPS, task assignment and

path planning were solved by the NBS solver and ISPS solver, respectively, and

independently. The time limit means the maximum allowed runtime of the optimization

solver in NBS-ISPS.

Figure 6. The relationship between success rate and the number of tasks (𝑛) for our methods and

the NBS-ISPS method with different numbers of robots (𝑟) and time limits: (a) time limit = 100 s; (b)

time limit = 200 s.

Figure 6 indicates that the success rate of our proposed methods is 100%, while the

success rate of the NBS-ISPS method decreases with an increasing number of tasks, which

implies that the NBS-ISPS method may not be suitable for large-scale problems. When the

number of tasks is 𝑛 = 50 , the success rate seems to be mainly influenced by path

planning, since the ISPS solver sometimes cannot generate feasible solutions within a

finite number of iterations and sometimes reaches no solution. Thus, the ISPS solver itself

is incomplete. When 𝑛 > 50, the success rate is mainly affected by task assignment. In this

case, the number of tasks 𝑛 is much larger than the number of robots 𝑟, and the NBS

solver may not be able to find a feasible solution in finite time. For example, in Figure 6a,

when 𝑛 = 80, 𝑟 = 5 (𝑛 ≫ 𝑟), the success rate of NBS-ISPS is only 15%.

By comparing Figure 6a,b, we find that increasing the time limit within a certain

range can improve the success rate of NBS-ISPS. For example, when 𝑛 = 20, 𝑟 = 10, and

the time limit is 100 s or 200 s, the success rate of NBS-ISPS is 90% or 95%, respectively.

Furthermore, we examined the effects of different numbers of robots on the success rate,

and found that the success rate of NBS-ISPS grows as the number of robots increases. In

summary, our proposed methods outperform the NBS-ISPS method in terms of success

rate with small-scale problems.

3.2.2. Analysis of Average Time Consumption

Figure 7 shows the average time consumption (𝑡𝑎𝑣𝑔) for the whole transportation and

manufacturing process in 20 sets of experiments using our proposed methods and the

NBS-ISPS method with different numbers of tasks and robots and varying weights.

Baseline means a task will be assigned to a machining center at the time point right after

the last task assigned to this machining center is finished.

Figure 7 indicates that the average time consumption of the proposed LSS method is

close to that of the NBS-ISPS method. The RSS method performs better than the NBS-ISPS

method, and the Baseline method performs the worst. This is potentially because the RSS

Figure 6. The relationship between success rate and the number of tasks (n) for our methods and the
NBS-ISPS method with different numbers of robots (r) and time limits: (a) time limit = 100 s; (b) time
limit = 200 s.

Figure 6 indicates that the success rate of our proposed methods is 100%, while the
success rate of the NBS-ISPS method decreases with an increasing number of tasks, which
implies that the NBS-ISPS method may not be suitable for large-scale problems. When
the number of tasks is n = 50, the success rate seems to be mainly influenced by path
planning, since the ISPS solver sometimes cannot generate feasible solutions within a finite
number of iterations and sometimes reaches no solution. Thus, the ISPS solver itself is
incomplete. When n > 50, the success rate is mainly affected by task assignment. In this
case, the number of tasks n is much larger than the number of robots r, and the NBS solver
may not be able to find a feasible solution in finite time. For example, in Figure 6a, when
n = 80, r = 5(n≫ r), the success rate of NBS-ISPS is only 15%.

By comparing Figure 6a,b, we find that increasing the time limit within a certain range
can improve the success rate of NBS-ISPS. For example, when n = 20, r = 10, and the time
limit is 100 s or 200 s, the success rate of NBS-ISPS is 90% or 95%, respectively. Furthermore,
we examined the effects of different numbers of robots on the success rate, and found
that the success rate of NBS-ISPS grows as the number of robots increases. In summary,
our proposed methods outperform the NBS-ISPS method in terms of success rate with
small-scale problems.

3.2.2. Analysis of Average Time Consumption

Figure 7 shows the average time consumption (tavg) for the whole transportation
and manufacturing process in 20 sets of experiments using our proposed methods and

Appl. Sci. 2024, 14, 3094 12 of 17

the NBS-ISPS method with different numbers of tasks and robots and varying weights.
Baseline means a task will be assigned to a machining center at the time point right after
the last task assigned to this machining center is finished.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 18

method tries to reduce the total time consumption by reorganizing the processing

sequences of machining centers, while the NBS-ISPS method does not more effectively

account for the time consumed by machining centers. Usually, the time consumed in

smart factories concentrates on the processing of workpieces and parts, while the time

spent transporting materials accounts for a relatively smaller proportion of the total time

consumption. Therefore, the NBS-ISPS method may not be applicable when the time

consumed by machining centers is a main concern.

Figure 7. The relationship between average time consumption (𝑡𝑎𝑣𝑔) and number of tasks (𝑛) for our

methods and the NBS-ISPS method with different numbers of robots (𝑟), the weight of time

consumption (𝑤𝑡), and the weight of energy consumption (𝑤𝑒): (a) 𝑟 = 5, 𝑤𝑡 = 0.6, 𝑤𝑒 = 0.4; (b) 𝑟 =

10, 𝑤𝑡 = 0.6, 𝑤𝑒 = 0.4; (c) 𝑟 = 5, 𝑤𝑡 = 0.4, 𝑤𝑒 = 0.6; (d) 𝑟 = 10, 𝑤𝑡 = 0.4, 𝑤𝑒 = 0.6.

3.2.3. Runtime Analysis

Figure 8 shows the relationship between the runtime of the NBS-ISPS method (when

time limit = 100 s) and our proposed methods with different numbers of tasks and robots.

In Figure 8a, we can find that the runtime of the task assignment (NBS solver) always

exceeds the time limit, which means that the task assignment can hardly find optimal

solutions within 100 s. In addition, the runtime of the NBS-ISPS method generally grows

as the number of tasks increases. When the number of robots increases from 5 to 10, the

runtime of these methods does not change too much.

Figure 7. The relationship between average time consumption (tavg) and number of tasks (n) for
our methods and the NBS-ISPS method with different numbers of robots (r), the weight of time
consumption (wt), and the weight of energy consumption (we): (a) r = 5, wt = 0.6, we = 0.4;
(b) r = 10, wt = 0.6, we = 0.4; (c) r = 5, wt = 0.4, we = 0.6; (d) r = 10, wt = 0.4, we = 0.6.

Figure 7 indicates that the average time consumption of the proposed LSS method is
close to that of the NBS-ISPS method. The RSS method performs better than the NBS-ISPS
method, and the Baseline method performs the worst. This is potentially because the
RSS method tries to reduce the total time consumption by reorganizing the processing
sequences of machining centers, while the NBS-ISPS method does not more effectively
account for the time consumed by machining centers. Usually, the time consumed in
smart factories concentrates on the processing of workpieces and parts, while the time
spent transporting materials accounts for a relatively smaller proportion of the total time
consumption. Therefore, the NBS-ISPS method may not be applicable when the time
consumed by machining centers is a main concern.

3.2.3. Runtime Analysis

Figure 8 shows the relationship between the runtime of the NBS-ISPS method (when
time limit = 100 s) and our proposed methods with different numbers of tasks and robots.
In Figure 8a, we can find that the runtime of the task assignment (NBS solver) always
exceeds the time limit, which means that the task assignment can hardly find optimal
solutions within 100 s. In addition, the runtime of the NBS-ISPS method generally grows
as the number of tasks increases. When the number of robots increases from 5 to 10, the
runtime of these methods does not change too much.

Appl. Sci. 2024, 14, 3094 13 of 17

Appl. Sci. 2024, 14, x FOR PEER REVIEW 14 of 18

Figure 8. The relationship between runtime and number of tasks (𝑛) for our methods and the NBS-

ISPS method with different numbers of robots (𝑟): (a,c) 𝑟 = 5; (b,d) 𝑟 = 10. The time limit for the

NBS-ISPS method is 100 s.

By comparing Figure 8a vs. Figure 8c or Figure 8b vs. Figure 8d, we find that the NBS-

ISPS method consumes a significant amount of time, while our proposed methods only

require a very small runtime. For example, when 𝑟 = 5, 𝑛 = 60, the runtime of NBS-ISPS

is 147.623 s and the runtime of RSS is only 0.254 s. In real manufacturing conditions, the

runtime for the NBS-ISPS method is almost unbearable. This result also reveals the

practical value of our methods.

3.3. Feasibility Analysis with Large-Scale Problems

Finally, we examined the feasibility of our proposed approach by comparing the total

time and energy consumption of three methods with large-scale problems (200–1000

tasks), as shown in Figure 9. Since the NBS-ISPS method cannot successfully generate

solutions for large-scale problems (even with an allowed runtime of more than 1000 s), it

is not included in this figure. Here, the total time and energy consumption (𝑇𝐶) are

normalized following Equation (16):

normalized 𝑇𝐶 =
𝑐 − 𝑐𝑚𝑖𝑛

𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛
 (16)

where 𝑐 is the time and energy consumed for transportation and processing, and 𝑐𝑚𝑎𝑥

and 𝑐𝑚𝑖𝑛 are the maximum and minimum sum of time or energy consumed for

transporting and processing.

Figure 9 shows that the total time and energy consumption grow with the number of

tasks, and the RSS method performs better than the LSS method. Both RSS and LSS

outperform the Baseline method for a varying number of robots and tasks.

By comparing Figure 9a vs. Figure 9b and Figure 9c vs. Figure 9d, we can see that

when the Baseline method is adopted, increasing the number of robots will not

significantly reduce the total consumption. For example, when using the Baseline method

and 𝑛 = 1000, the normalized 𝑇𝐶 values in Figure 9a,b are 0.923 and 0.911, respectively.

However, the total consumption decreases markedly if the LSS or RSS method is used.

When using LSS with 𝑛 = 1000, the normalized 𝑇𝐶 values in Figure 9a,b are 0.819 and

0.761, respectively. One possible explanation is that when the processing time and energy

Figure 8. The relationship between runtime and number of tasks (n) for our methods and the NBS-
ISPS method with different numbers of robots (r): (a,c) r = 5; (b,d) r = 10. The time limit for the
NBS-ISPS method is 100 s.

By comparing Figure 8a vs. Figure 8c or Figure 8b vs. Figure 8d, we find that the
NBS-ISPS method consumes a significant amount of time, while our proposed methods
only require a very small runtime. For example, when r = 5, n = 60, the runtime of NBS-
ISPS is 147.623 s and the runtime of RSS is only 0.254 s. In real manufacturing conditions,
the runtime for the NBS-ISPS method is almost unbearable. This result also reveals the
practical value of our methods.

3.3. Feasibility Analysis with Large-Scale Problems

Finally, we examined the feasibility of our proposed approach by comparing the total
time and energy consumption of three methods with large-scale problems (200–1000 tasks),
as shown in Figure 9. Since the NBS-ISPS method cannot successfully generate solutions for
large-scale problems (even with an allowed runtime of more than 1000 s), it is not included
in this figure. Here, the total time and energy consumption (TC) are normalized following
Equation (16):

normalized TC =
c− cmin

cmax − cmin
(16)

where c is the time and energy consumed for transportation and processing, and cmax and
cmin are the maximum and minimum sum of time or energy consumed for transporting
and processing.

Figure 9 shows that the total time and energy consumption grow with the number
of tasks, and the RSS method performs better than the LSS method. Both RSS and LSS
outperform the Baseline method for a varying number of robots and tasks.

By comparing Figure 9a vs. Figures 9b and 9c vs. Figure 9d, we can see that when
the Baseline method is adopted, increasing the number of robots will not significantly
reduce the total consumption. For example, when using the Baseline method and n = 1000,
the normalized TC values in Figure 9a,b are 0.923 and 0.911, respectively. However, the
total consumption decreases markedly if the LSS or RSS method is used. When using LSS
with n = 1000, the normalized TC values in Figure 9a,b are 0.819 and 0.761, respectively.
One possible explanation is that when the processing time and energy consumption of

Appl. Sci. 2024, 14, 3094 14 of 17

machining centers are not considered (e.g., in warehousing and logistics scenarios), more
robots will support the faster completion of tasks. However, when the processing time
and energy consumption of machining centers are considered (e.g., in a smart factory
environment), even if the number of robots increases and the tasks can be transported to
machining centers faster, it still takes a certain amount of time for machining centers to
process these tasks. This leads to the queuing of tasks and waiting of robots, and the total
time consumption will not be significantly reduced. However, the LSS or RSS method can
reorganize the processing sequence of tasks in real time, which can alleviate the queuing
issue and reduce the waiting time for robots. Thus, the decrease in TC will be more obvious
when the LSS or RSS method is adopted.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 18

consumption of machining centers are not considered (e.g., in warehousing and logistics

scenarios), more robots will support the faster completion of tasks. However, when the

processing time and energy consumption of machining centers are considered (e.g., in a

smart factory environment), even if the number of robots increases and the tasks can be

transported to machining centers faster, it still takes a certain amount of time for

machining centers to process these tasks. This leads to the queuing of tasks and waiting

of robots, and the total time consumption will not be significantly reduced. However, the

LSS or RSS method can reorganize the processing sequence of tasks in real time, which

can alleviate the queuing issue and reduce the waiting time for robots. Thus, the decrease

in 𝑇𝐶 will be more obvious when the LSS or RSS method is adopted.

In addition, by comparing Figure 9a vs. Figure 9c and Figure 9b vs. Figure 9d, we can

observe the influence of different weights of time and energy on the final 𝑇𝐶. For example,

if using RSS with 𝑟 = 5, 𝑤𝑡 = 0.6, 𝑤𝑒 = 0.4, 𝑛 = 1000, the normalized 𝑇𝐶 = 0.732, while

when 𝑟 = 5, 𝑤𝑡 = 0.4, 𝑤𝑒 = 0.6, 𝑛 = 1000 , the normalized 𝑇𝐶 = 0.881 . This result

indicates that the advantage of RSS method is more pronounced when the weight of time

(𝑤𝑡) is larger. A possible explanation is that the search of the machining sequence is

performed only after each determination of which machining center is assigned, i.e., the

energy consumption does not vary with the insertion position since we only consider the

time consumed by the machining center without considering the energy consumption

during its idle time.

Figure 9. The relationship between normalized total consumption (𝑇𝐶) and number of tasks (𝑛) for

our proposed methods with different numbers of robots (𝑟), weight of time consumption (𝑤𝑡), and

weight of energy consumption (𝑤𝑒): (a) 𝑟 = 5, 𝑤𝑡 = 0.6, 𝑤𝑒 = 0.4; (b) 𝑟 = 10, 𝑤𝑡 = 0.6, 𝑤𝑒 = 0.4; (c)

𝑟 = 5, 𝑤𝑡 = 0.4, 𝑤𝑒 = 0.6; (d) 𝑟 = 10, 𝑤𝑡 = 0.4, 𝑤𝑒 = 0.6.

Figure 10 shows the number of searching iterations and runtime of the proposed

methods versus the number of tasks with large-scale problems. Figure 10a indicates that

the number of search iterations increases along with the increasing number of tasks. The

number of search iterations using the RSS method is greater than that using the LSS

method, which can lead to slightly longer computation time, as shown in Figure 10b. We

Figure 9. The relationship between normalized total consumption (TC) and number of tasks (n) for
our proposed methods with different numbers of robots (r), weight of time consumption (wt), and
weight of energy consumption (we): (a) r = 5, wt = 0.6, we = 0.4; (b) r = 10, wt = 0.6, we = 0.4;
(c) r = 5, wt = 0.4, we = 0.6; (d) r = 10, wt = 0.4, we = 0.6.

In addition, by comparing Figure 9a vs. Figures 9c and 9b vs. Figure 9d, we can
observe the influence of different weights of time and energy on the final TC. For example,
if using RSS with r = 5, wt = 0.6, we = 0.4, n = 1000, the normalized TC = 0.732, while
when r = 5, wt = 0.4, we = 0.6, n = 1000, the normalized TC = 0.881. This result indicates
that the advantage of RSS method is more pronounced when the weight of time (wt) is larger.
A possible explanation is that the search of the machining sequence is performed only after
each determination of which machining center is assigned, i.e., the energy consumption
does not vary with the insertion position since we only consider the time consumed by the
machining center without considering the energy consumption during its idle time.

Figure 10 shows the number of searching iterations and runtime of the proposed
methods versus the number of tasks with large-scale problems. Figure 10a indicates that
the number of search iterations increases along with the increasing number of tasks. The
number of search iterations using the RSS method is greater than that using the LSS
method, which can lead to slightly longer computation time, as shown in Figure 10b. We
also checked the generated paths of each robot in a simulation environment developed
with MATLAB 2023a, as shown in Figure 11, and no conflicting paths are found.

Appl. Sci. 2024, 14, 3094 15 of 17

Appl. Sci. 2024, 14, x FOR PEER REVIEW 16 of 18

also checked the generated paths of each robot in a simulation environment developed

with MATLAB 2023a, as shown in Figure 11, and no conflicting paths are found.

Figure 10. Computational efficiency of proposed methods with 5 robots for large-scale problems:

(a) relationship between number of search iterations and number of tasks (𝑛); (b) relationship

between runtime and number of tasks (𝑛). The Baseline method is not included in (a) because it does

not utilize any searching strategy for assigning tasks, i.e., no search iterations are involved.

Figure 11. A simulation environment developed in MATLAB 2023a to verify the feasibility of

generated paths for mobile robots [28]. The numbers in blue circles and green circles are the indices

of robots and start positions of transportation tasks, respectively.

4. Conclusions

In this paper, we present an integrated task- and path-planning approach for mobile

robots in a smart factory. The basic idea is that in the stage of task assignment, the real

paths for mobile robots are identified and the time and energy consumed by mobile robots

and machining centers are calculated. Then, a greedy strategy in conjunction with the

Looking-backward Search Strategy or Regret-based Search Strategy is used to obtain task

assignments in time series that satisfy the proposed objectives, which enables a joint

efficient solution to be established for both task assignment and path planning. The real

time consumed on the planned paths is used as the basis to adjust and improve the

selection of mobile robots and task assignments, and the precedence constraints between

sequential manufacturing tasks are considered simultaneously.

The performance of our proposed methods is compared with NBS-ISPS, a popular

method for PC-TAPF problems in a simulated factory environment with small-scale

problems. The results show that the success rate of the proposed methods outperforms

that of the NBS-ISPS method, and the average time consumption of the proposed methods

is close to that of the NBS-ISPS method. Moreover, our proposed methods run much faster

Figure 10. Computational efficiency of proposed methods with 5 robots for large-scale problems:
(a) relationship between number of search iterations and number of tasks (n); (b) relationship between
runtime and number of tasks (n). The Baseline method is not included in (a) because it does not
utilize any searching strategy for assigning tasks, i.e., no search iterations are involved.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 16 of 18

also checked the generated paths of each robot in a simulation environment developed

with MATLAB 2023a, as shown in Figure 11, and no conflicting paths are found.

Figure 10. Computational efficiency of proposed methods with 5 robots for large-scale problems:

(a) relationship between number of search iterations and number of tasks (𝑛); (b) relationship

between runtime and number of tasks (𝑛). The Baseline method is not included in (a) because it does

not utilize any searching strategy for assigning tasks, i.e., no search iterations are involved.

Figure 11. A simulation environment developed in MATLAB 2023a to verify the feasibility of

generated paths for mobile robots [28]. The numbers in blue circles and green circles are the indices

of robots and start positions of transportation tasks, respectively.

4. Conclusions

In this paper, we present an integrated task- and path-planning approach for mobile

robots in a smart factory. The basic idea is that in the stage of task assignment, the real

paths for mobile robots are identified and the time and energy consumed by mobile robots

and machining centers are calculated. Then, a greedy strategy in conjunction with the

Looking-backward Search Strategy or Regret-based Search Strategy is used to obtain task

assignments in time series that satisfy the proposed objectives, which enables a joint

efficient solution to be established for both task assignment and path planning. The real

time consumed on the planned paths is used as the basis to adjust and improve the

selection of mobile robots and task assignments, and the precedence constraints between

sequential manufacturing tasks are considered simultaneously.

The performance of our proposed methods is compared with NBS-ISPS, a popular

method for PC-TAPF problems in a simulated factory environment with small-scale

problems. The results show that the success rate of the proposed methods outperforms

that of the NBS-ISPS method, and the average time consumption of the proposed methods

is close to that of the NBS-ISPS method. Moreover, our proposed methods run much faster

Figure 11. A simulation environment developed in MATLAB 2023a to verify the feasibility of
generated paths for mobile robots [28]. The numbers in blue circles and green circles are the indices
of robots and start positions of transportation tasks, respectively.

4. Conclusions

In this paper, we present an integrated task- and path-planning approach for mobile
robots in a smart factory. The basic idea is that in the stage of task assignment, the real
paths for mobile robots are identified and the time and energy consumed by mobile robots
and machining centers are calculated. Then, a greedy strategy in conjunction with the
Looking-backward Search Strategy or Regret-based Search Strategy is used to obtain task
assignments in time series that satisfy the proposed objectives, which enables a joint
efficient solution to be established for both task assignment and path planning. The real
time consumed on the planned paths is used as the basis to adjust and improve the selection
of mobile robots and task assignments, and the precedence constraints between sequential
manufacturing tasks are considered simultaneously.

The performance of our proposed methods is compared with NBS-ISPS, a popular
method for PC-TAPF problems in a simulated factory environment with small-scale prob-
lems. The results show that the success rate of the proposed methods outperforms that of
the NBS-ISPS method, and the average time consumption of the proposed methods is close
to that of the NBS-ISPS method. Moreover, our proposed methods run much faster than
NBS-ISPS, which allows smoother deployment of these methods in real-world scenarios.

We also analyze the feasibility of our proposed methods with large-scale problems. The
results show that the proposed LSS method and RSS method are better than the traditional
method (Baseline) when the number of tasks or robots increases, especially when the

Appl. Sci. 2024, 14, 3094 16 of 17

number of tasks is large. In addition, when the weight of time consumption increases, the
advantage of our approach becomes more noticeable. The proposed approach generally
requires a short computation time, and it can help reduce the idle time of machining
centers and make full use of these resources to improve the overall operational efficiency of
smart factories.

One limitation of this study is that the size of the studied factory is relatively small.
We will examine the reliability and computational efficiency of the proposed approach in a
large-scale factory environment where the planning and scheduling of transportation tasks
for mobile robots can be more difficult. The complex relationship between manufacturing
time and consumed energy will also be considered in future work.

Author Contributions: Conceptualization, S.L., Y.B., B.F. and D.Y.; methodology, S.L.; formal anal-
ysis, S.L., Y.B., B.F. and D.Y.; data curation, S.L.; writing—original draft preparation, S.L. and B.F.;
writing—review and editing, Y.B.; funding acquisition, Y.B. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China (2022YFB4702400).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data supporting the conclusions of this article will be made
available by the authors upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Yadav, A.; Jayswal, S.C. Modelling of Flexible Manufacturing System: A Review. Int. J. Prod. Res. 2018, 56, 2464–2487. [CrossRef]
2. Bogue, R. The Changing Face of the Automotive Robotics Industry. Ind. Robot Int. J. Robot. Res. Appl. 2022, 49, 386–390. [CrossRef]
3. Bogue, R. The Role of Robots in the Electronics Industry. Ind. Robot Int. J. Robot. Res. Appl. 2023, 50, 717–721. [CrossRef]
4. Brown, K.; Peltzer, O.; Sehr, M.A.; Schwager, M.; Kochenderfer, M.J. Optimal Sequential Task Assignment and Path Finding for

Multi-Agent Robotic Assembly Planning. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation
(ICRA), Paris, France, 31 May–31 August 2020; pp. 441–447.

5. Saravanan, S.; Ramanathan, K.C.; MM, R.; Janardhanan, M.N. Review on State-of-the-Art Dynamic Task Allocation Strategies for
Multiple-Robot Systems. Ind. Rob. 2020, 110, 52. [CrossRef]

6. Lai, X.; Li, J.; Chambers, J. Enhanced Center Constraint Weighted A* Algorithm for Path Planning of Petrochemical Inspection
Robot. J. Intell. Robot. Syst. 2021, 102, 78. [CrossRef]

7. Stern, R. Multi-Agent Path Finding—An Overview. In Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2019;
pp. 96–115.

8. Korsah, G.A.; Stentz, A.; Dias, M.B. A Comprehensive Taxonomy for Multi-Robot Task Allocation. Int. J. Rob. Res. 2013, 32,
1495–1512. [CrossRef]

9. Bredstrom, D.; Rönnqvist, M. A Branch and Price Algorithm for the Combined Vehicle Routing and Scheduling Problem with
Synchronization Constraints. NHH Department of Finance & Management Science Discussion Paper No. 2007/7. Available
online: https://ssrn.com/abstract=971726 (accessed on 24 January 2024).

10. Yu, J.; LaValle, S.M. Multi-Agent Path Planning and Network Flow. In Algorithmic Foundations of Robotics X; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 157–173.

11. Yu, J.; LaValle, S.M. Optimal Multi-Robot Path Planning on Graphs: Structure and Computational Complexity. arXiv 2015,
arXiv:1507.03289.

12. Ma, H.; Wagner, G.; Felner, A.; Li, J.; Kumar, T.K.; Koenig, S. Multi-Agent Path Finding with Deadlines. arXiv 2018,
arXiv:1806.04216.

13. Bennewitz, M.; Burgard, W.; Thrun, S. Finding and Optimizing Solvable Priority Schemes for Decoupled Path Planning Techniques
for Teams of Mobile Robots. Rob. Auton. Syst. 2002, 41, 89–99. [CrossRef]

14. Erdem, E.; Kisa, D.G.; Oztok, U.; Schüller, P. A General Formal Framework for Pathfinding Problems with Multiple Agents. In
Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, Bellevue, WA, USA, 14–18 July 2013.

15. Dai, M.; Tang, D.; Giret, A.; Salido, M.A. Multi-Objective Optimization for Energy-Efficient Flexible Job Shop Scheduling Problem
with Transportation Constraints. Robot. Comput. Integr. Manuf. 2019, 59, 143–157. [CrossRef]

16. Ham, A. Transfer-Robot Task Scheduling in Job Shop. Int. J. Prod. Res. 2021, 59, 813–823. [CrossRef]

https://doi.org/10.1080/00207543.2017.1387302
https://doi.org/10.1108/IR-01-2022-0022
https://doi.org/10.1108/IR-04-2023-0082
https://doi.org/10.1108/IR-04-2020-0073
https://doi.org/10.1007/s10846-021-01437-8
https://doi.org/10.1177/0278364913496484
https://ssrn.com/abstract=971726
https://doi.org/10.1016/S0921-8890(02)00256-7
https://doi.org/10.1016/j.rcim.2019.04.006
https://doi.org/10.1080/00207543.2019.1709671

Appl. Sci. 2024, 14, 3094 17 of 17

17. Fatemi-Anaraki, S.; Tavakkoli-Moghaddam, R.; Foumani, M.; Vahedi-Nouri, B. Scheduling of Multi-Robot Job Shop Systems in
Dynamic Environments: Mixed-Integer Linear Programming and Constraint Programming Approaches. Omega 2023, 115, 102770.
[CrossRef]

18. Sharon, G.; Stern, R.; Felner, A.; Sturtevant, N.R. Conflict-Based Search for Optimal Multi-Agent Pathfinding. Artif. Intell. 2015,
219, 40–66. [CrossRef]

19. Hönig, W.; Kiesel, S.; Tinka, A.; Durham, J.; Ayanian, N. Conflict-Based Search with Optimal Task Assignment. In Proceedings of
the International Joint Conference on Autonomous Agents and Multiagent Systems, Stockholm, Sweden, 10–15 July 2018.

20. Dasgupta, P.; Woosley, B. Multirobot Task Allocation with Real-Time Path Planning. In Proceedings of the Florida AI Research
Society, St. Pete Beach, FL, USA, 22–24 May 2013.

21. Chen, Z.; Alonso-Mora, J.; Bai, X.; Harabor, D.D.; Stuckey, P.J. Integrated Task Assignment and Path Planning for Capacitated
Multi-Agent Pickup and Delivery. IEEE Robot. Autom. Lett. 2021, 6, 5816–5823. [CrossRef]

22. Elfakharany, A.; Ismail, Z.H. End-to-End Deep Reinforcement Learning for Decentralized Task Allocation and Navigation for a
Multi-Robot System. Appl. Sci. 2021, 11, 2895. [CrossRef]

23. Tillman, F.A.; Cain, T.M. An Upperbound Algorithm for the Single and Multiple Terminal Delivery Problem. Manag. Sci. 1972, 18,
664–682. [CrossRef]

24. Diana, M.; Dessouky, M.M. A New Regret Insertion Heuristic for Solving Large-Scale Dial-a-Ride Problems with Time Windows.
Transp. Res. Part B Methodol. 2004, 38, 539–557. [CrossRef]

25. Zheng, S.K.X.; Tovey, C.; Borie, R.; Kilby, P.; Markakis, V.; Keskinocak, P. Agent Coordination with Regret Clearing. In Proceedings
of the AAAI Conference on Artificial Intelligence, Chicago, IL, USA, 13–17 July 2008; AAAI Press: Palo Alto, CA, USA,
2008; p. 101.

26. Dohn, A.; Rasmussen, M.S.; Larsen, J. The Vehicle Routing Problem with Time Windows and Temporal Dependencies. Networks
2011, 58, 273–289. [CrossRef]

27. Silver, D. Cooperative Pathfinding. In Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, Marina Del Rey, CA, USA, 1–2 June 2005; Volume 1, pp. 117–122.

28. Liu, S.; Feng, B.; Yu, D.; Bi, Y. An Integrated Task and Path Planning Approach for Mobile Robots in Smart Factory. In Proceedings
of the ASME International Mechanical Engineering Congress and Exposition, Columbus, OH, USA, 30 October–3 November
2022; ASME: New York, NY, USA, 2022; Volume 2B, p. V02BT02A058.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.omega.2022.102770
https://doi.org/10.1016/j.artint.2014.11.006
https://doi.org/10.1109/LRA.2021.3074883
https://doi.org/10.3390/app11072895
https://doi.org/10.1287/mnsc.18.11.664
https://doi.org/10.1016/j.trb.2003.07.001
https://doi.org/10.1002/net.20472

	Introduction
	Methods
	Problem Formulation
	Integrated Task and Path Planning
	Looking-Backward Search Strategy (LSS)
	Regret-Based Search Strategy (RSS)

	Results of Simulation Experiments and Discussion
	Experiment Settings
	Performance Analysis with Small-Scale Problem
	Analysis of Success Rate in Generating Feasible Solutions
	Analysis of Average Time Consumption
	Runtime Analysis

	Feasibility Analysis with Large-Scale Problems

	Conclusions
	References

