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A B S T R A C T

Human-robot collaborative transportation (HRCT) of deformable objects is critical for improving production 
efficiency, reducing human workload, and enhancing operational safety in the context of handling delicate or 
flexible materials. However, traditional passive compliance control methods often suffer from decreased control 
accuracy and inadequate tracking performance in complex tasks, while proactive motion control approaches are 
sensitive to environment interference and lack stability. To address these issues, we propose a novel HRCT 
approach for deformable objects based on multi-modal reinforcement learning (RL) and adaptive admittance 
control, termed as Collaborative Deformable-Object Transportation (CoDoT). This approach combines proactive 
motion planning with adaptive compliance control, improving the compliance and stability in human-robot 
collaborative transportation tasks, effectively reducing object deformation and ensuring safe human-robot 
interaction. Specifically, the proactive motion planning module integrates multi-modal (including force/tor
que and tactile feedback) state representation with RL-based motion control. In addition, an adaptive admittance 
controller dynamically adjusts the admittance parameters based on the object’s deformation and robot’s motion 
fluctuations to balance the compliance and stability of transportation. The proposed approach is examined and 
evaluated in both simulated and real-world scenarios. The experimental findings indicate that our approach 
effectively enhances HRCT of deformable objects in operational accuracy, stability, and deformation control 
capability compared to traditional RL-based control models and admittance control methods.

1. Introduction

The human-centered philosophy empowering the collaboration be
tween humans and machines, has become the cornerstone of next- 
generation manufacturing mode such as Industry 5.0 [1]. In this 
context, Human-Robot Collaborative Transportation (HRCT), as a key 
technology for efficient and safe material handling, is increasingly being 
applied across various manufacturing sectors, such as electronics and 
aerospace manufacturing industry [2]. Although pure robotic trans
portation may excel in efficiency, it faces challenges in handling soft and 
deformable objects that require precise control. Meanwhile, manual 
transportation, though more adaptable, often requires more labor force 
for efficient handling in high-intensity tasks and could pose risks to 

human workers’ health. By combining the strengths of robots and 
humans, HRCT overcomes these limitations, leading to enhanced pro
duction efficiency, reduced human workload, improved human-robot 
interaction safety, and decreased human operational errors.1

HRCT tasks can be categorized into three types based on the rigidity 
of the handled objects: rigid objects (e.g., wooden sticks, metal parts), 
highly deformable objects (e.g., ropes, fabrics, which can withstand 
stretching but not compression), and partially deformable objects (e.g., 
silicone rods, composite materials) [3]. There have been extensive 
research on HRCT for rigid and highly deformable objects [4,5]. How
ever, studies involving partially deformable objects remain relatively 
limited. HRCT for partially deformable objects holds significant poten
tial for applications in many industrial areas, such as precision 
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engineering (e.g., transportation of flexible films) and electronics 
manufacturing (e.g. handling of soft sensors and integrated circuit 
boards). Compared to rigid objects, partially deformable objects exhibit 
more intricate deformation characteristics in handling tasks. Precise 
control strategies are required to prevent irreversible deformations or 
damage of these objects, while highly deformable objects such as fabrics 
usually can tolerate much larger deformation. Therefore, the robot 
control for handling partially deformable objects is more complex.

Existing methods of HRCT for partially deformable objects primarily 
rely on force or position feedback for passive compliance control [6] or 
proactive motion planning [7]. While passive compliance methods 
perform well in simple tasks, they often suffer from decreased control 
accuracy and inadequate tracking performance in more complex tasks, 
particularly in handling partially deformable objects. This is mainly due 
to the inability of Force/Torque (F/T) sensors (usually installed on the 
wrist of a robot arm) to detect local contact information and the atten
uation of force/torque signals being transmitted from the deformation 
end to the fixed end (imagine a rubber rod gasping by a robotic arm). On 
the other hand, proactive motion planning methods, which can predict 
human intent to enable flexible control, often suffer from insufficient 
stability. These methods are highly susceptible to environmental 
changes (e.g., uncertainty in human motion speed and force due to 
unstable grasping during transportation), which can significantly affect 
their performance. Therefore, balancing compliance and stability in 
handling partially deformable objects remains a critical challenge.

In deformable-object manipulation, accurately and comprehensively 
representing the state of the object is a fundamental need. Current 
methods predominantly rely on vision systems to capture shape changes 
[8]. However, ordinary industrial cameras often struggle with detecting 
small-scale deformations and handling interference and occlusion is
sues, which restricts their practical applicability. Consequently, adopt
ing non-vision sensing for deformable-object’s state representation is of 
great practical significance. Such methods could overcome the limita
tions of visual perception and provide more reliable information for the 
precise manipulation of deformable objects.

To address these challenges, we propose a novel HRCT approach for 
partially deformable objects based on multi-modal reinforcement 
learning (RL) and adaptive admittance control, termed as Collaborative 
Deformable-Object Transportation (CoDoT). This approach combines 
proactive motion planning and adaptive compliance control, enhancing 
both the compliance and stability of human-robot collaborative trans
portation tasks while effectively reducing object deformation during 
transportation and improving human-robot collaboration safety. Spe
cifically, we develop a proactive motion planning model based on multi- 
modal state representation and RL. Instead of using visual sensing, this 
method employs force/torque and tactile information jointly to accu
rately represent the state of the soft object and generate robot control 
strategies. Additionally, the model is enhanced with a domain adapter to 
improve its adaptability to handling objects with varying stiffnesses. We 
also propose an adaptive admittance controller that dynamically adjusts 
the admittance parameters to balance compliance and stability. Exper
imental results demonstrate that our approach significantly outperforms 
traditional RL-based control methods and admittance control methods 
in terms of operational accuracy, stability, and object deformation 
control. The main contributions of this work include: 

- A novel human-robot collaborative transportation approach for 
partially deformable objects is proposed. This approach combines 
proactive motion planning and adaptive compliance control, which 
can significantly reduce the collaborative burden on operators and 
improve operational comfort and safety.

- A proactive robot motion planning model based on multi-modal state 
representation and reinforcement learning is developed. This model 
enhances real-time perception of soft object’s states and improves 
the robot’s active compliance and adaptability.

- An adaptive admittance controller is designed. This controller in
troduces deformation and stability factors to dynamically adjust 
admittance parameters, thereby balancing compliance and stability 
in human-robot collaboration.

The rest of this paper is organized as follows. Section 2 reviews 
related work in human-robot collaborative transportation, methods for 
soft object manipulation and admittance control. Section 3 introduces 
the architecture of the proposed approach and explains its key compo
nents. Section 4 presents the simulation and real-world experimental 
setups to validate our approach, and provides a detailed discussion of 
the experimental results. Section 5 summarizes our work and highlights 
potential future research directions.

2. Related work

2.1. Human-robot collaborative transportation

Passive compliance control is one of the most commonly used control 
strategies in Human-Robot Collaborative Transportation (HRCT) tasks. 
It relies on force/torque (F/T) sensors to measure external forces and 
achieves compliance control through F/T feedback or elastic mechanical 
components (e.g., spring, damper) [9–11]. For example, Hirata et al. 
[12] developed a passive robot porter, where servo brakes respond to 
the external forces exerted by operator, enabling compliant manipula
tion of objects to follow human motion. Similarly, Nemec et al. [13] 
adjusted the robot’s stiffness in the operational workspace, allowing the 
robot to exhibit passive compliance during collaborative tasks. Ikeura 
and Inooka [14] utilized variable impedance control for human-robot 
collaboration, where impedance parameters are adaptively switched 
to meet the requirements of different task stages. While these passive 
compliance control methods can offer adaptability and safety for un
complicated HRCT tasks, their performance heavily depend on the 
external forces applied, lacking proactive environmental perception and 
predictive capabilities. As a result, they perform poorly in complex and 
dynamic environments [3].

In contrast, proactive control methods enhance autonomy and in
telligence by actively sensing environmental changes and predicting 
human intentions to coordinate the robot’s movements. These methods 
typically employ cameras [15] and tactile sensors [16] to perceive 
environmental states. Some researches utilize wearable sensors to 
monitor human muscle activity [17] and posture changes [18], thereby 
predicting human behavior and adjusting control strategies accordingly. 
However, proactive control methods often face challenges in stability, 
especially when confronted with sudden environmental changes or 
highly noisy sensor data. In such cases, these methods may lead to 
dangerous robot actions, potentially causing damage to the manipulated 
objects and compromising the safety of human-robot collaboration.

Recently, hybrid control methods that combine passive compliance 
with proactive control have significantly improved the adaptability and 
stability of human-robot collaboration systems. For example, Kim et al. 
[19] designed a novel safety joint module that actively responds to 
collisions and passively absorbs shock forces through mechanical com
ponents. However, the collision detection threshold needs to be manu
ally set in their work, which may not adapt well to dynamic scenarios. 
Sirintuna et al. [3] presented an object deformation-agnostic HRCT 
framework, where human intentions are inferred based on tactile and 
motion capture data, and collaboration for handling objects with vary
ing stiffness is achieved via admittance control. However, this method 
requires humans to wear motion capture devices, which can limit the 
flexibility and efficiency of human operators. Additionally, Bussy et al. 
[20] proposed a method in which robots can switch between “leader” 
and “follower” roles, but the flexibility of robot movement is constrained 
by pre-defined rules. To address these issues, we expect to develop a 
hybrid control strategy that integrates proactive robot motion planning 
and adaptive admittance control. This strategy aims to enhance the 
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robot’s adaptability to dynamic environments while improving the 
collaboration compliance and system stability.

2.2. Soft object manipulation

In human-robot collaborative manipulation tasks involving soft ob
jects, the nonlinear dynamics and deformable characteristics of these 
objects impose higher demands on robotic perception and control. Soft 
object state estimation methods can be categorized into model-based 
and learning-based methods. Model-based methods predict the defor
mation of soft objects by constructing dynamics models. For example, 
Aksoy and Wen [21] employed a position-based dynamics model to 
predict the motion of soft materials. Andronas et al. [22] simulated 
fabric deformation using a mass-spring model to enable collaborative 
manipulation of fabrics. Additionally, Sirintuna et al. [23] integrated 
tactile feedback and human kinematic information to create an adaptive 
control framework that can respond in real time to unknown de
formations of soft targets. Besides, Finite Element Analysis (FEA) has 
been widely used for simulating soft object deformations, providing a 
theoretically precise description of the deformation process [24,25]. 
However, physical modeling approaches often rely on complex prior 
knowledge, entail significant computational costs, and lack real-time 
performance [26], which limits their practical applicability in dy
namic scenarios.

Recently, data-driven methods have become increasingly popular for 
learning deformation patterns of soft objects from large-scale datasets. 
For instance, Zhou et al. [27] proposed a method based on topological 
latent representations and sliding mode control to achieve shape control 
of deformable objects. Nicola et al. [8] employed convolutional neural 
networks (CNNs) to process depth images for real-time cloth deforma
tion estimation. Furthermore, reinforcement learning (RL), with strong 
self-learning capability through interaction with the environment, has 
also demonstrated advantages in soft object manipulation. For example, 
Laezza and Karayiannidis [28] utilized the Deep Deterministic Policy 
Gradient (DDPG) algorithm to solve the problem of elastoplastic soft 
object manipulation by incorporating intrinsic shape features. Scheikl 
et al. [29] applied pixel-level domain adaptation for simulating-to-real 
visual transfer, advancing human-robot collaboration in medical sur
gery. However, these methods often rely on visual information, which in 
practical applications are prone to limitations due to occlusion and 
image detection accuracy, and struggle to precisely capture state 
changes of soft objects in dynamic environments.

To address the limitations of vision-based detection methods, re
searchers have explored using force or tactile sensors for state estimation 
and control of soft objects. For example, Sanchez et al. [30] utilized 
tactile sensors to track soft object deformations in real time and update 
the deformation model based on contact forces. Süberkrüb et al. [31] 
combined tactile sensing with dynamic models to enable online shape 
updating. However, most of these methods rely on single sensor types, 
limiting their ability to comprehensively capture the complex states of 
soft objects, especially in dynamic environments with large de
formations or noisy sensor data. To overcome these limitations, we 
expect to develop a novel proactive motion planning method based on 
multi-modal perception and reinforcement learning. This method in
tegrates force and tactile information to accurately represent the state of 
soft targets and utilizes RL to achieve proactive human-robot collabo
rative transportation in dynamic environments.

2.3. Compliance control methods in human-robot collaboration

Compliance control strategies, such as admittance control and 
impedance control, have been widely adopted in human-robot collab
oration tasks due to their ability to ensure safe and efficient interaction 
between human and robots. Admittance control regulates the robot’s 
displacement or velocity based on external force/torque sensor feed
back, making it particularly suitable for tasks that require precise force 

tracking. In contrast, impedance control modulates the interaction dy
namics through the stiffness, damping, and inertia characteristics of the 
mechanical system, making it more effective for motion tracking tasks, 
such as tool handling or trajectory following, where precise position 
control is essential [32]. In the context of HRCT, admittance control is 
more applicable, as it allows for real-time adjustment of robot motion in 
response to varying forces exerted by the human, thus ensuring the 
operational comfort and safety of human workers.

However, these methods typically rely on fixed parameters, such as 
stiffness and damping [33,34], which limits their adaptability to dy
namic environments or variations in human motion, thereby reducing 
the smoothness of human-robot collaboration. To enhance the adapt
ability of compliance control, parameter-varying compliance control 
strategies have been proposed. For instance, Park et al. [34] introduced 
an impedance control framework that estimates and adjusts object 
impedance in real-time based on online estimation of object’s physical 
parameters (e.g., mass, center of mass, moment of inertia), thereby 
improving collaboration performance in complex tasks. Furthermore, 
Huang et al. [35] proposed an adaptive impedance control method that 
dynamically adjusted the stiffness coefficient based on the robot’s end- 
effector position to ensure control stability and compliance. Other 
methods combine reinforcement learning with model predictive control 
to optimize impedance parameters, significantly improving interaction 
performance [36,37]. Additionally, some approaches integrate visual 
and force sensor information to implement nonlinear control for smooth 
end-effector tracking [38]. However, these methods are primarily 
designed for rigid objects and exhibit limitations when applied to 
deformable objects.

In recent years, variable admittance control has gradually been 
applied to human-robot collaboration tasks involving deformable ob
jects. For example, Sirintuna et al. [23] combined admittance control 
with hand velocity to dynamically generate reference velocities that 
adapt to objects with different deformation characteristics, but this 
approach neglects deformation information, which could potentially 
damage the manipulated object. Tang et al. [39] utilized a gray pre
diction model to adjust the reference position in real-time, reducing 
steady-state force errors to improve soft object grasping accuracy. 
However, this method struggles to adapt to dynamic environments 
especially when the manipulated object’s position changes rapidly. To 
address these limitations, we expect to propose an adaptive admittance 
controller that introduces deformation and stability factors, enabling 
dynamic adjustment of admittance parameters and significantly 
improving both compliance and stability in human-robot collaboration.

3. Methods

3.1. Overall structure of the proposed approach

Fig. 1 presents the overall structure of the proposed Collaborative 
Deformable-Object Transportation Approach (CoDoT), which consists of 
three main modules: Perception, Proactive Motion Planning and 
Compliance Control. The Proactive Motion Planning module includes 
domain adapter, multi-modal encoder, deformation predictor, and 
reinforcement learning (RL) model. This module utilizes multi-modal 
sensing inputs provided by the Perception module to make intelligent 
decisions regarding the motion planning of the robot. The Compliance 
Control module employs an adaptive admittance controller that can 
dynamically adjust the admittance control parameters, enabling 
compliant control with enhanced adaptability. The Proactive Motion 
Planning Module and the Compliance Control Module work synergisti
cally in human-robot collaborative transportation tasks. The former 
provides adaptive and proactive following capability through motion 
strategies generated from the RL model, while the latter ensures system 
responsiveness and stability through adaptive admittance controller. For 
simplicity, the terms “soft” and “deformable” are used to refer to 
“partially deformable” in the following sections.
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In this approach, a silicone rod is selected as a representative soft 
object for transportation due to its well-defined physical properties (e.g., 
shape and elasticity). Additionally, the silicone rod offers a controlled 
and repeatable test scenario, making it ideal for evaluating the perfor
mance of our approach. By utilizing the domain adapter (as described in 
Section 3.4), our approach is capable of handling a wide variety of soft 
objects. This adaptability ensures that our method can be smoothly 
applied to other similar deformable objects (e.g., flexible bars and soft 
boards), making it highly versatile and suitable for diverse industrial 
applications.

The whole system works as follows: initially, the tactile data and 
force/torque (F/T) data are input to the domain adapter, which maps 
them to a standardized reference object data distribution. The adapted 
data is then passed to the multi-modal encoder and deformation pre
dictor to extract target object features and predict the deformation of the 
soft object. This information is further input into the RL model to sup
port robot motion planning. Simultaneously, the admittance controller 

dynamically adjusts the admittance control parameters based on the F/T 
data, motion states of robot (e.g., displacement, velocity, and accelera
tion), and the deformation information, thereby ensuring stable 
compliant control. The key techniques involved in this approach are 
described in detail in the following subsections.

3.2. State representation and deformation prediction model for soft object

Obtaining the accurate status of the object is crucial for efficient 
control in soft-object manipulation tasks. As a key indicator of the target 
object’s physical state, deformation is essential for assessing the stability 
and adaptability of human-robot collaborative transportation (HRCT) of 
soft objects. We propose a multi-modal state representation and defor
mation prediction model to capture surface contact information and 
deformation characteristics of target object, supporting efficient training 
of the RL-based motion planning model and precise control by the 
admittance controller. The architecture of this module is illustrated in 

Fig. 1. Overall structure of the proposed Collaborative Deformable-Object Transportation Approach (CoDoT).

Fig. 2. The architecture of the multi-modal state representation and deformation prediction model.
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Fig. 2.
Specifically, the module encodes two types of sensor data: tactile 

data from the robot gripper, and force/torque (F/T) data from the ro
bot’s wrist joint. Given the distinct characteristics of each modality, 
dedicated encoders are designed for extracting features from each type 
of data. For tactile feedback, a Convolutional Neural Network (CNN) is 
employed to extract features from the tactile data and capture the 
relationship between the spatial distribution of tactile signals and the 
state of soft object. First, tactile data from both sides are integrated into 
3 × 3 × 3 tensors, where each layer of the tensor represents force mea
surements along the x, y and z axes. Considering the scenario where the 
contact area of soft object and the tactile sensor is flat, the force distri
bution on the tactile sensor’s surface is expected to exhibit smooth and 
continuous characteristics [40]. Bilinear interpolation is applied to 
upsample the tactile data, enhancing its resolution and continuity, 
thereby improving the fine-grained feature extraction. The upsampled 
tactile data is then passed through a convolutional module for feature 
extraction, where the input data is first normalized. Two 3 × 3 con
volutional layers, ReLU and Tanh activation functions, and a max- 
pooling layer are sequentially applied to extract tactile features. The 
resulting feature vectors are then passed through a two-layer fully 
connected network, which performs dimensionality reduction and out
puts the final feature vectors z1 and z2. It is important to note that, to 
avoid confusion between the left and right tactile data during concate
nation, we independently encode the left and right sides. For F/T feed
back, the forces (Fx, Fy, Fz) and torques (Tx,Ty,Tz) are first smoothed 
using a Low-pass filter and then passed through a two-layer Multi-layer 
Perceptron (MLP) to obtain the feature vector z3.

In the fusion module, the tactile feature vectors z1 and z2, along with 
the F/T feature vector z3, are concatenated along the feature dimension 
to form a unified latent representation vector z, which is then input to 
the deformation predictor to forecast the target object’s deformation. 
The deformation predictor consists of a three-layer MLP network. We 
employ a supervised learning framework to jointly train the encoder and 
predictor to minimize the deformation prediction error.

3.3. Reinforcement learning model for proactive motion planning

To enhance the proactive collaboration performance of the robot, a 

motion planning module based on Reinforcement Learning (RL) is 
developed. In this module, the robot is treated as an intelligent agent 
that learns to take actions through interaction with environment. 
Leveraging RL’s strong self-learning capabilities, our approach improves 
the adaptability and efficiency of robotic systems in dynamic trans
portation environments.

The training process for the proactive motion planning module is 
depicted in Fig. 3. The RL model is trained within the Unity platform, 
which provides a flexible virtual environment for robot motion training. 
A linear rail-slider system is also incorporated to simulate human hand’s 
motion, with the robot arm and slider each holding one end of the ob
ject. To overcome the limitations of conventional robotic simulation 
platforms (e.g., lack of high-precision simulations of force and tactile 
feedback), we introduce a pre-trained Force-Tactile Predictor to predict 
both tactile and force/torque (F/T) signals. The Force-Tactile Predictor 
is implemented as an MLP network with four fully connected layers, 
where each layer comprises 128 neurons. It receives the position data of 
the robot’s end effector (gripper) and the slider as inputs, and outputs 
the corresponding tactile data as well as F/T measurements. This pre- 
trained model enables the simulation of realistic tactile and force sig
nals, facilitating more accurate and reliable training for the RL-based 
motion planning module.

The RL training process is as follows, the rail-slider system generates 
random translational motion along the x and y axes, as well as rotational 
motion around the z-axis, which is provided by a rotatable platform on 
the rail’s slider. The robot’s and slider’s position, Probot =

(
xrobot , yrobot ,

θrobot
)
,Pslider = (xslider, yslider, θslider) are input to Force-Tactile predictor to 

predict the force/torque signal F = (Fx,Fy,Fz), T = (Tx,Ty,Tz) and tactile 
signal H. These data are then fed into the pre-trained Multi-modal 
Encoder and Deformation Predictor network to generate the latent 
vector z and the deformation δ of the soft object, respectively. The latent 
vector z serves as the RL state, while the deformation δ is used to 
compute the reward function. The RL model outputs robot action a, 
which is then used in conjunction with inverse kinematics to solve for 
the joint angles and update the robot’s pose. The parameters of the 
Force-Tactile predictor, Multi-modal Encoder, and Deformation Pre
dictor models remain frozen during RL training, which is a common 
strategy in robot control area to reduce training costs [41].

We employ Proximal Policy Optimization (PPO) [42] as the RL 

Fig. 3. Training process of proactive robot motion planning module.
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algorithm due to its superior efficiency and stability in handling complex 
decision-making tasks. PPO improves training stability by clipping the 
probability ratio during policy updates, thus limiting the magnitude of 
updates. This helps to enhance training efficiency while preventing 
abrupt changes in model performance. Additionally, PPO incorporates 
an advantage function estimate, which effectively reduces the variance 
in policy updates, making it particularly well-suited for decision-making 
in dynamic and complex environments. The definitions of the state, 
action, and reward function of the RL model are as follows:

State: 

s = z = [z1, z2,⋯, z32] (1) 

Action: 

a =
[
vx, vy,ω

]
(2) 

where,
vx : Robot velocity along x axis.
vy : Robot velocity along y axis.
ω : Robot angular velocity along z axis.
Reward function: 

r = − λ1

∑n

i=1
|δi| + λ2C+P1 +P2 (3) 

where, 

P1 =

{
10 if C = Cmax
0 if C < Cmax

(4) 

P2 =

{
− 10 if Dx > σx or Dy > σy or Dθ > σθ

0 else (5) 

Dx = |xslider − xrobot| (6) 

Dy = |yslider − yrobot | (7) 

Dθ = |θslider − θrobot| (8) 

δi represents the deformation magnitude of the soft object along 
different directions, λ1 and λ2 are positive weighting coefficients. C de
notes the current step number in training episode, while Cmax refers to 
the episode length. P1 is the task completion reward function, and P2 is a 
penalty function used to penalize cases where the relative position be
tween the robot and the slider exceeds the specified range. Dx, Dy,Dθ, σx,

σy, σθ represent the relative distances along the x and y axes and the 
angular deviation along the z axis between the slider and the robot’s 
end-effector, along with the corresponding boundary thresholds. As the 
target’s deformation decreases, the reward increases. λ2C is introduced 
to incentivize the robot to consistently follow the slider. Upon episode 
completion, if the robot remains within the specified distance from the 
slider, a task completion reward is applied. Furthermore, if the relative 
distance or angular deviation between the robot and slider exceeds the 
defined threshold, a penalty is triggered, enforcing strict constraints on 
the robot’s following deviation.

3.4. Domain adapter

As mentioned earlier, deformation information is critical to the 
subsequent motion planning and compliance control in our system. 
However, identical force will result in different deformations of soft 
objects with various stiffness and shapes, and our system only uses the 
force/torque and tactile data of a reference soft object to train all state 
representation, deformation prediction and motion planning models. 
Directly utilizing the force/torque and tactile data of a new soft object as 
the input will lead to errors in computing the encoded latent state vector 
and predicting the deformation. To solve this issue, we propose a 

domain adapter to compensate the influence of a new object’s stiffness 
and shape on its deformation. This approach enables efficient reuse of 
pre-trained neural network models, enhancing the adaptability and 
generalization of the robot’s proactive motion planning across different 
soft objects.

Soft materials typically exhibit elastic behavior within small defor
mation ranges. The robot-object-human system in collaborative trans
portation can be approximated as a cantilever beam model, as shown in 
Fig. 4. In this model, a cantilever beam of length L is fixed at one end by 
the robot gripper, while a load F is applied perpendicular to the beam’s 
free end by human, causing a displacement u at the beam’s tip.

For the reference elastic rod, assuming it is subjected to a vertical 
load Fr, and based on beam bending theory, the displacement at the tip 
ur can be approximated as: 

ur =
FrLr

3

3ErIr
=

Fr

kr
(9) 

where Lr, Er, Ir represent the length, Young’s modulus, and area moment 
of inertia of the reference elastic rod, respectively, and kr is the equiv
alent flexural stiffness.

Similarly, for a different elastic rod, the displacement at the tip can 
be approximated as: 

ui =
FiLi

3

3EiIi
=

Fi

ki
(10) 

where Li, Ei, Ii are the length, Young’s modulus, and area moment of 
inertia of the new elastic rod, respectively, and ki is the equivalent 
flexural stiffness. To achieve a mapping of the mechanical properties 
between different elastic rods, we introduce a scaling coefficient k: 

k =
ki

kr
=

Fiur

Frui
(11) 

Using this scaling coefficient, the Force-Tactile signals Xi of the new 
elastic rod can be equivalently mapped to the mechanical property 
distribution Xr of the reference elastic rod: 

Xi =
1
k
Xr , X ∈ {F,T,H} (12) 

In practical scenarios, when the robot interacts with a new elastic 
rod, the scaling coefficient k is first measured through simple experi
ments. Specifically, one end of both the reference rod and new elastic 
rod is fixed, and an identical force, perpendicular to the axis of the rods, 
is applied to the free ends. The displacements ur and ui at the tip of the 
reference and new rods, respectively, are measured, and the scaling 
coefficient is computed as k = ur

ui
. Subsequently, the domain adapter 

utilizes this coefficient to scale the force, torque, and tactile signals from 
the new elastic rod. These scaled signals can be directly input into the 
pre-trained proactive motion planning model (see Fig. 3). The domain 
adapter enables the model to efficiently adapt to new soft objects with 
varying materials or shapes without requiring additional training, which 
significantly reduces the data acquisition and model training costs.

Fig. 4. Stress diagram of the elastic rod cantilever beam.
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3.5. Adaptive admittance controller

To enhance the compliance and stability of human-robot collabora
tion, our approach also integrates a compliance control module. This 
module primarily achieves adaptive compliance control through a 
variable-parameter admittance controller. The admittance controller 
adjusts the robot’s desired motion state in response to external forces, as 
represented by the following dynamic model of the standard admittance 
controller: 

Fext = M
(

ẍc − ẍt

)

+B
(

ẋc − ẋt

)

+K(xc − xt) (13) 

where Fext is the external force vector, M is the inertia coefficient 
matrix, B is the damping coefficient matrix, K is the stiffness coefficient 
matrix. ẍc, ẋc, xc, ẍt, ẋt, xt represent the acceleration, velocity, and 
position vectors of the robot’s desired trajectory and actual trajectory 
points, respectively. In human-robot collaborative transportation tasks, 
we aim for high compliance, meaning the robot should follow the op
erator’s movements precisely while jointly manipulating the object. 
Such tasks require the robot to fully comply with the operator’s actions. 
To achieve this, we set the stiffness matrix’s diagonal elements to zero, 
thereby eliminating any restoring forces. Consequently, Equation (13)
simplifies to: 

Fext = M
(

ẍc − ẍt

)

+B
(

ẋc − ẋt

)

(14) 

The inertia matrix M is a diagonal matrix representing the robot’s inertia 
characteristics along each degree of freedom: 

M = diag
(
mx,my,mz, Ix, Iy, Iz

)
(15) 

where mx,my,mz, Ix, Iy, Iz are the equivalent masses and equivalent 
rotational inertias along the x, y, and z axes, respectively. The damping 
matrix B represents the system’s damping characteristics, which are 
used to smooth the robot’s motion. The diagonal elements represent the 
damping coefficients for each degree of freedom, while the off-diagonal 
elements represent the coupling effects between different degrees of 
freedom. We approximate B as a diagonal matrix, which is a common 
strategy for computational simplicity [35]. 

B = diag
(
bx, by, bz, brx, bry, brz

)
(16) 

where the diagonal elements correspond to the damping coefficients for 
the robot’s end-effector translation and rotation along the x, y, and z 
axes. The adaptive admittance control model is proposed as follows: 

B = max (0,F (ξ, δ) )Bc +B∊ (17) 

M = ωm⋅max(0,F (ξ, δ) )Mc +M∊ (18) 

where, 

F (ξ, δ) =
1
Δt

(

ω1ξ − ω2

∑n

i=1

∫ t+Δt

t
|δi|dt

)

(19) 

ξ =

∫ t+Δt

t
I

(

ẋc(t)⋅ẋc(t − ∊) < 0
)

dt (20) 

In these equations, Bc,Mc are the baseline damping and inertia 
matrices, and B∊,M∊ are constant matrices used to ensure the damping 
and inertia coefficients remain positive. The function F (ξ, δ) is the 
adjustment function, where ξ represents the oscillation level of the ro
bot’s trajectory, measured by the number of oscillations of the robot’s 
end-effector velocity within a unit time. The variable δi represents the 
deformation of the manipulated object in different directions. The in
dicator function I ensures that ξ is calculated when the velocity oscil
lates, and ωm,ω1,ω2 are positive weighting coefficients. Δt is the time 

window length, and ∊ is the time step length.
The weight adjustment function F (ξ, δ) balances the stability and 

compliance of the robot’s collaborative control. When ξ increases, 
indicating significant oscillations in the robot’s end-effector motion, the 
diagonal elements of the inertia matrix M and the damping matrix B 
increase, thereby stabilizing the robot’s response to external forces. 
Conversely, when ξ decreases, the diagonal elements of M and B 
decrease to improve compliance. Additionally, as δi increases, indicating 
greater deformation of the soft object, the diagonal elements of B, M 
decrease to enhance the robot’s responsiveness to external forces, 
reducing the object’s deformation. This formulation extends conven
tional admittance control by introducing an adaptive parameter tuning 
mechanism based on the system’s oscillation and object deformation, 
allowing the robot to dynamically adapt to varying interaction condi
tions in human-robot collaboration.

The adaptive admittance controller works in tandem with the pro
active motion planning module. The controller uses the predicted object 
deformation information and external force data from the motion 
planning module to adaptively adjust the admittance parameters, 
thereby providing high-frequency compliance control.

4. Experiments and results

4.1. Experiment settings

To validate the proposed approach, we conducted a series of exper
iments. Fig. 5(a) and 5(b) illustrate the experimental setups for the rail- 
robot and human-robot collaborative transportation scenarios, respec
tively. In the rail-robot scenario, routine rail motion is employed to 
ensure a fair comparison of the method’s performance between different 
methods, while the human-robot scenario tests the effectiveness of the 
proposed approach in real human-robot handling context. The experi
ment utilizes a 6-DOF multi-joint robot arm (JAKA Zu3), which is 
mounted on an aluminum alloy frame. A Robotiq 2F-85 gripper is 
attached to the robot, and a dual-DOF linear rail is placed on the table. 
The rail’s slider is equipped with a rotatable platform, allowing for both 
x, y axes translation and z axis rotation, thereby simulating human 
hand’s holding movements. One end of a silicone rod (with a Shore 
hardness of 55A, length of 50 cm, diameter of 35 mm) is grasped by the 
robot’s gripper, while the other end is either held by a clamp on the 
rotatable platform (Fig. 5(a)) or by a human hand (Fig. 5(b)).

To collect real-time data during the collaborative handling process, 
we use both F/T sensors and tactile sensors. The F/T sensor (JK-SE-II- 
200) is mounted on the wrist joint of the robot, and two PapillArray 
Tactile Sensor arrays are installed on the inner sides of the gripper fin
gers, measuring the 3-axes force at 9 contact points on each side, as 
shown in Fig. 5(a). All algorithmic models were executed on a work
station equipped with an Intel Core i7-12700F CPU, 16 GB of RAM, and 
an NVIDIA RTX 3080 GPU. The neural network components were 
developed and trained using Python within the PyCharm environment. 
Meanwhile, the real-time robot control modules were implemented in 
C#, and the low-level robot control was enabled through the official SDK 
provided by JAKA Robotics. The entire system was deployed on a 
Windows 10 platform. Communication between the Python and C# 
modules was established via TCP/IP sockets to ensure efficient data 
exchange during real-time collaborative execution.

The experiments are designed as follows: In Sec. 4.2, we evaluate the 
accuracy of the deformation prediction model based on multi-modal 
state representation. In Sec. 4.3, we compare the performance of the 
proactive motion planning module with ablation methods in a virtual 
environment to evaluate its effectiveness. Section 4.4 presents ablation 
and comparative tests conducted in the rail-robot scenario to examine 
the performance of our proposed HRCT method in physical environ
ment. Finally, in Sec. 4.5, human-robot collaborative experiments are 
conducted and the generalization ability of the proposed method across 
different object stiffness and collaboration tasks is demonstrated.
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4.2. Evaluation of the multi-modal encoder and deformation prediction 
model

We first pretrained the multi-modal encoder and deformation pre
diction model to support the subsequent training of the motion planning 
model. To reduce the cost of data collection, we use a rail-slider system 
to simulate various hand grasp positions and automatically collect F/T 
data (F = (Fx,Fy,Fz), T = (Tx,Ty,Tz)) and tactile signals H, as shown in 
Fig. 6(a). To capture accurate deformation information of the soft rod, 
four strain gauges (BF 120–50 AA) are attached to the midpoint of the 
rod surface to measure deformation in four directions, as depicted in 
Fig. 6(b). During the experiment, the rail slider and robot move 
randomly within the relative deviation ranges: Δx ∈ [ − 50, 50]mm, Δy 
∈ [ − 10, 10] mm, Δθ ∈ [− 15, 15]

◦

. A total of 10 thousand measurement 
samples from various positions were collected, which took approxi
mately 8 h. To prevent residual stress in the tactile sensors due to rela
tive slippage between the soft rod and the gripper, a grasp initialization 
process is implemented. Specifically, after collecting every 20 samples, 
the gripper releases and re-grips the soft rod, and the tactile sensors are 
recalibrated for eliminating any bias.

We compare our method (referred to as Tactile (CNN) + F/T(MLP)) 
with four ablation methods, as summarized in Table 1. All methods 
utilize an encoder-decoder architecture, where the encoder processes F/ 
T or tactile data and output a 32-dimensional latent vector. The decoder 
network (see Fig. 2) remains consistent across all methods which re
ceives the latent vector and predicts the deformation value. Specifically, 

our proposed method employs CNN and MLP networks to encode the 
tactile and F/T data. The Tactile (MLP) + F/T(MLP) method uses MLP 
networks to encode both the tactile and F/T data, with the F/T network 
being identical to our method. In contrast, the tactile network directly 
concatenates the raw tactile data and inputs it into a 3-layer MLP with 
64 hidden units to generate a 16-dimensional latent vector. The Tactile 

(a)                                                                   (b)
Fig. 5. Experiment settings. (a) Rail-robot transportation settings. (b) Human-robot transportation settings.

(a)                                                                  (b)

Fig. 6. Experiment setup for data collection. (a) The rail-robot system for multi-modal data collection. (b) Strain gauges are attached to the soft rod for measuring 
deformation in four directions (positive/negative bending around x and z axes).

Table 1 
Settings and performance of encoder-decoder methods. The bolded numbers 
represent the best performance. * indicates our proposed method.

Method Sensor Tactile 
Network

Train 
Loss

Test 
Loss

Prediction 
Error

Tactile F/ 
T

CNN MLP

Tactile 
(CNN) 
+ F/T 
(MLP)*

√ √ √ ​ 0.008 0.011 10.6 %

Tactile 
(MLP) 
+ F/T 
(MLP)

√ √ ​ √ 0.009 0.013 11.2 %

Tactile 
(MLP)

√ ​ ​ √ 0.012 0.015 12.2 %

Tactile 
(CNN)

√ ​ √ ​ 0.011 0.014 11.5 %

F/T (MLP) ​ √ ​ ​ 0.016 0.020 14.1 %
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(MLP) method only employs a 3-layer MLP network with 64 units to 
encode tactile data. The Tactile (CNN) method uses a CNN to encode 
tactile data, with the network architecture being identical to our 
approach. Finally, the F/T(MLP) method encodes the F/T data using an 
MLP network, similar to the MLP network used in our method.

The representation encoder and deformation prediction model are 
trained jointly, with the loss function being the mean squared error 
(MSE) of the deformation prediction. All methods are trained under the 
same hyperparameter settings: learning rate = 0.0001, batch size = 32, 
using the Adam optimizer, for 200 epochs.

Table 1 also lists the training loss, test loss, and deformation pre
diction error for each method. we can observe that the proposed Tactile 
(CNN) + F/T(MLP) method exhibits the smallest training loss, test loss, 
and prediction error, demonstrating the best performance in deforma
tion prediction. Compared to single-modal methods (i.e., Tactile (MLP), 
Tactile (CNN), F/T(MLP)), the use of multi-modal methods (i.e., Tactile 
(CNN) + F/T(MLP), Tactile (MLP) + F/T(MLP)) reduces the deformation 
prediction error. This is likely due to the complementary nature of 
tactile and F/T data, with tactile data reflecting local features of the 
contact area, while F/T data represents the overall force state of the 
human-robot system. By integrating these two types of data, our model 
gains a more comprehensive understanding of the object’s contact state 
and deformation characteristics, thereby enhancing both state repre
sentation and deformation prediction. Additionally, when selecting the 
tactile encoder, the CNN architecture outperforms the MLP network in 
terms of prediction accuracy. This is potentially because tactile data 
contains rich spatial features, and CNNs are better suited to exploit the 
spatial correlations in tactile data, efficiently extracting deformation 
characteristics of the target object. In contrast, MLP may be not good at 
handling high-dimensional complex data with spatial dependencies.

It is worth noting that strain gauges are only used during the offline 
data collection phase to label ground-truth deformation, and are not 
required during actual task execution. Based on additional experiments, 
the placement location of strain gauges during training has trivial 
impact on final task performance. For practical deployment, we 
recommend placing the strain gauges near the midpoint of the reference 
object, as this region tends to provide more stable deformation data 
while simplifying installation.

4.3. Validation of the robot motion planning model

Since Unity cannot simulate force and tactile sensors with high 
precision, we first pretrained a Force-Tactile Predictor to generate 
simulated F/T and tactile data to support the RL-based motion planning. 
The Force-Tactile Predictor is a 4-layer MLP network, with each layer 
consisting of 128 neurons as shown in Sec 3.3. The input consists of the 
relative position differences between the robot’s end-effector and the 
slider’s end (Δx, Δy,Δθ), where Δx = xrobot − xslider,Δy = yrobot − yslider,

Δθ = θrobot − θslider, and the output is the predicted tactile data and F/T 
data. The training data is sourced from the data collected in Section 4.2, 
and the training loss is the mean squared error (MSE) between the 
predicted and actual F/T and tactile data. The model is trained with a 
learning rate of 0.0001, a batch size of 32, and the Adam optimizer for 
200 epochs. The test results show that the F/T prediction error is 3.7 %, 
and the tactile prediction error is 5.1 %, which demonstrate the high 
accuracy of the pretrained Force-Tactile Predictor.

After obtaining the pretrained representation encoder, deformation 
prediction model, and the Force-Tactile predictor, we proceed to train 
the RL-based robot motion planning model in the Unity environment. As 
shown in Fig. 7, we first construct a rail-robot model in Unity, where the 
slider can move along the x and y axes and rotate around the z-axis on 
the rail. The slider’s movement range is: xslider ∈ [ − 25, 25] cm,

yslider ∈ [ − 5, 5] cm, θslider ∈ [ − 20, 20]
◦

, with random movement veloc
ities: vx ∈ [ − 5, 5] cm/s, vy ∈ [ − 0.5, 0.5] cm/s, ω ∈ [ − 2, 2]

◦

/s. The RL 
agent’s action velocity range matches that of the slider. The reward 

function parameters for Equations (3)-(5) are set as follows: λ1 = 0.01,
λ2 = 0.001,Cmax = 200,σx = 5 cm,σy = 2 cm, σθ = 24◦ .

We utilized the five pretrained representation encoders and defor
mation prediction models from Section 4.2 to generate latent vectors as 
the state input for the RL model and to predict the deformation of soft 
rod. Each RL model was trained for 5 million steps, with each training 
process taking approximately 2 h. The cumulative reward curves of 
these five RL models are shown in Fig. 8. As observed, the proposed 
Tactile (CNN) + F/T(MLP) method yields the highest cumulative 
reward. Moreover, the multi-modal methods significantly outperform 
the single modal methods in terms of reward. This may be because 
combining tactile and F/T information provides a more comprehensive 
state representation, mitigating the influence of data noise or informa
tion gaps (e.g., the lack of detailed local contact information for F/T 
sensors, the lack of comprehensive global force data for tactile sensors) 
that might arise from using a single modality. This helps the RL model 
learn a more optimal motion policy. Furthermore, a more accurate 
deformation prediction model further enhances the performance of the 
RL model.

To further evaluate the model’s performance, we conducted 1,000 
test runs for each of the five methods in the virtual environment, with 
the results shown in Table 2. The performance metrics include task 
success rate (i.e., the percentage of episodes where the relative distance 
between the robot and slider remains within a predefined range), and 
translational following errors along the x, y axes, as well as rotational 
following errors around z-axis. As seen in Table 2, the proposed method 
outperforms all other models across all metrics, achieving a task success 
rate of 99.8 % with following errors of 9.4 mm, 1.9 mm, and 3.2◦ in the 
x, y, and z axes, respectively. In contrast, the F/T(MLP) method performs 
the worst, with a success rate of 93.1 %, and the largest following errors 
in all directions (22.1 mm, 3.9 mm, and 11.2◦, respectively). This may be 
due to the fact that F/T data struggles to effectively capture local contact 
states and complex soft contact dynamics, leading to insufficient state 
representation. For the Tactile (MLP) and Tactile (CNN) methods, their 
success rates and following errors are better than those of the F/T(MLP) 
method, likely because tactile data captures local contact information, 
which is crucial for human-robot collaborative manipulation of soft 
targets. However, their performance still lags that of the multi-modal 
fusion methods, since the multi-modal models fully exploit the com
plementary advantages of tactile and F/T data, leading to enhanced state 
representation. Tactile data provides fine-grained contact deformation 
information, especially in scenarios involving complex local contact, 

Fig. 7. The RL-based robot motion planning model training in Unity 
environment.
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helping more precisely adjust the robot’s local movement. On the other 
hand, F/T data offers global force balance and dynamic force variation 
information, assisting in maintaining stability during large-range 
movements. By combining tactile and F/T data, the multi-modal 
approach achieves comprehensive perception of both local and global 
contact states, resulting in higher task success rates and smaller 
following errors in handling soft-object tasks.

4.4. Rail-robot transportation performance

In this section, we compare our proposed Collaborative Deformable- 
Object Transportation (CoDoT) method with five ablation methods, as 
well as two state-of-the-art methods, ACC [23] and AIC [35] (as shown 
in Table 3) in the rail-robot scenario. We fixed one end of the elastic rod 
to the rail slider to generate the routine movement patterns, which 

ensures a fair comparison between our method and other approaches. 
Our proposed CoDoT is a hybrid control method that combines a multi- 
modal state representation-based motion planning module with an 
adaptive admittance controller. The parameters of the admittance 
controller are set as follows: weighting coefficients are ωm = 0.8, ω1 =

10, ω2 = 0.25, time window length Δt = 1000ms, time step length ∊ =

20ms, baseline and constant inertia matrices Mc =

diag(1.5,1.5, 1.5, 0.3,0.3, 0.3), M∊ = diag(0.5,0.5, 0.5, 0.1,0.1, 0.1), 
baseline and constant damping matrices Bc = diag(20,20,20, 3,3, 3), 
B∊ = diag(3,3, 3,0.5, 0.5, 0.5). These parameters were chosen based on 
prior controller tuning experience and validated to ensure stable and 
responsive compliant motion in the collaborative tasks. The ablation 
methods CoDoT (Tac) and CoDoT (F/T) are also hybrid control models 
that utilize motion planning modules based on single-modal (Tactile or 
F/T) state representations combined with an adaptive admittance 
controller. RLDoT is an active control model that solely relies on a multi- 
modal state representation-based motion planning module. Var-Ad and 
Fixed-Ad are compliant control methods, with the former only using the 
adaptive admittance controller and the latter employing a fixed- 
parameter admittance controller. ACC is an advanced hybrid control 
approach that dynamically adjusts the robot’s motion by introducing an 
adaptive exponent based on the operator hand’s velocity and admittance 
reference velocity, combined with a fixed-parameter admittance 
controller for collaborative control. The AIC method adapts the 
impedance controller by adjusting the impedance parameter weight 
function based on the relative position of the robot and human hand. We 
conduct 10 tests in each of the following three manipulation scenarios: 
1D Linear motion, 2D Linear motion, and Zigzag motion. 

(1) 1D Linear motion task

The 1D Linear motion task scenario is shown in Fig. 9(a), where the 
rail slider undergoes back and forth translational movements along the 
x-axis with a one-way travel distance of 50 cm and speed of vx = 5 cm/s. 
The performance metrics for the task include the average deformation of 
the elastic rod, δ = 1

4
∑4

i=1|δi|, where δi is the deformation measured by 
the four strain gauges. Additionally, the following deviation metrics are 
measured: the x-axis and y-axis following deviations between the robot 
and the slider, ex = xrobot − xslider, ey = yrobot − yslider, respectively. For 
clearer performance comparisons, all methods are categorized into three 

Fig. 8. Cumulative reward curve of different RL models.

Table 2 
Task success rate and following deviation of different methods. The bolded 
numbers represent the best performance. * indicates our proposed method.

Method Success Rate Following Deviation

ex(mm) ey(mm) eθ(
◦

)

Tactile (CNN) + F/T (MLP)* 99.8 % 9.4 1.9 3.2
Tactile (MLP) + F/T (MLP) 98.5 % 11.6 2.1 6.4

Tactile (MLP) 94.7 % 19.7 3.3 9.4
Tactile (CNN) 96.4 % 13.5 2.4 7.3

F/T (MLP) 93.1 % 22.1 3.9 11.2

Table 3 
Settings of ablation and compared methods. * indicates our proposed method.

Method Admittance Controller Proactive Decision Model

Fixed Adaptive

CoDoT* ​ √ F/T + Tactile
CoDoT (Tac) ​ √ Tactile
CoDoT (F/T) ​ √ F/T

RLDoT ​ ​ F/T + Tactile
Var-Ad ​ √ ​

Fixed-Ad √ ​ ​
ACC [23] √ ​ Human-robot Motion
AIC [35] ​ √ ​
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groups. Group (1) includes CoDoT, RLDoT, Var-Ad, and Fixed-Ad, and is 
used to ablate and compare the effects of the compliance control mod
ule, the proactive motion planning module, and the variable admittance 
controller. Group (2) consists of CoDoT, CoDoT (F/T), and CoDoT (Tac), 
which are used to compare the performance of multi-modal sensors 
against single-modal sensors. Group (3) includes CoDoT, ACC, and AIC, 
and is aimed at comparing our method with other state-of-the-art 
approaches.

Fig. 9 (b)-(g) show the performance comparisons for these methods. 
It is evident that the proposed hybrid control method (CoDoT) out
performs all other methods in terms of both the overall deformation δ 

and the following deviations ex, ey. When proactive motion planning is 
employed but without adaptive compliance control, the RLDoT method 
exhibits larger fluctuations in the following deviations. This may be due 
to that when only relying on proactive motion planning control, the 
robot becomes more sensitive to changes in external forces, leading to 
motion instability. On the other hand, when adaptive compliance con
trol is used but without proactive motion planning, the Var-Ad method 
leads to larger deformation of the target object. This is likely because 
compliance control cannot predict changes in human-robot collabora
tion tasks, especially when the slider changes its direction of movement 
(e.g., steps 50, 100, and 150). In such cases, the robot fails to respond 

Fig. 9. Performance comparison in 1D Linear motion task.
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with precise movements, causing significant deformation of the target 
object. In contrast, the proposed CoDoT method results in minimal and 
smooth changes in both target deformation and following deviation, 
demonstrating its stability to external motion changes and disturbances.

Additionally, the Fixed-Ad method performs the worst in terms of 
both object deformation and following deviations. This may be due to 
the fixed admittance control parameters, which are unable to adapt to 
dynamic environmental changes, thus preventing dynamic adjustment 
for compliance control. Besides, from Fig. 9 (c) and (f), we observe that 
when only single-modal state representation models are used, the object 
deformation and collaborative following deviations increase for both 

CoDoT (F/T) and CoDoT (Tac). This suggests that single-modal tactile or 
F/T information is insufficient to fully and accurately represent the 
collaborative manipulation state, leading to control strategies that are 
unable to adapt accurately to the movement of the rail slider. 

(2) 2D Linear motion task

The 2D Linear motion task scenario is depicted in Fig. 10(a), where 
the rail slider undergoes reciprocal translational movements along both 
the x-axis and y-axis. The movement distances along the x-axis and 
y-axis are 50 cm and 30 cm, respectively, with slider velocities of vx =

Fig. 10. Performance comparison in 2D Linear motion task.
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5 cm/s, vy = 3 cm/s. Fig. 10(b)-(g) show the performance of the 2D 
Linear motion task, revealing that the proposed CoDoT method excels in 
both target object’s deformation and following deviations. Specifically, 
the maximum target deformation of CoDoT is 56, which represents a 
22.2 % improvement compared to the second-best method CoDoT (Tac) 
(with a maximum deformation of 72). Additionally, the maximum 
following deviations of CoDoT along the x-axis and y-axis are 79 mm and 
12 mm, respectively. In comparison, the CoDoT (F/T) method achieves 
maximum deviations of 84 mm and 26 mm. This result indicates a clear 
improvement in y-axis following performance of CoDoT, with a reduc
tion of 53.8 % in following deviation compared to CoDoT(F/T). 

(3) Zigzag motion task

The Zigzag motion scenario is shown in Fig. 11(a) which involves the 
rail slider performing zigzag-type reciprocal translational movements 
along with the x-axis and y-axis. The one-way movement distances for 
the x-axis and y-axis are 50 cm and 10 cm, respectively, with velocities 
vx = 5 cm/s, vy = 4cm/s. In this task, the frequent change of slider 
motion direction significantly increases the system fluctuations, placing 
larger challenges on the collaborative performance. The experiment 
results are shown in Fig. 11(b)-(g). We can see that the proposed CoDoT 
method continues to demonstrate superior performance in both target 

Fig. 11. Performance comparison in Zigzag motion task.
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deformation control and following deviation. Specifically, the maximum 
deformation for the CoDoT method is 64, which is a 17 % reduction 
compared to the second-best CoDoT(F/T) method (with a maximum 
deformation of 77). This highlights the significant advantage of CoDoT 
in deformation control. Moreover, the following deviations for CoDoT 
remain within a smaller range compared to other methods. The 
following deviation fluctuations are notably reduced, particularly along 
the y-axis, where CoDoT effectively suppresses the magnitude and 
abrupt changes of deviation fluctuations. In contrast, the y-axis 
following deviations of other methods exhibit larger fluctuations and 
instability. These results indicate that the proposed CoDoT method is 
capable of maintaining stable collaborative performance in complex and 
rapidly changing motion scenarios, demonstrating its reliability and 
superiority in dynamic environments.

Additionally, we conducted a comparison of the normalized soft rod 
deformation and the average force exerted on the robot end-effector 
(

F = 1
3
(
|Fx| + |Fy| + |Fz|

)
)

, with the detailed results shown in Table 4. 

As observed, the CoDoT method exhibits the least deformation across all 
tasks, demonstrating the superior following performance and the ability 
to maintain target shape stability in these collaborative handling 
scenarios.

Regarding the force exerted on the robot, CoDoT shows the lowest 
forces in Task 1 and Task 2 (1.45 N and 2.12 N, respectively). In Task 3, 
the force is 3.35 N, which is second only to the CoDoT (F/T) method, 
which records a force of 3.32 N. These results highlight the collaborative 
compliance advantage of the proposed method, where the operator only 
needs to apply small force to successfully cooperate with the robot in the 
handling tasks. In contrast, when only the adaptive admittance 
controller (Var-Ad) or the proactive model (RLDoT) is used, both 
deformation and force metrics perform worse, illustrating the limita
tions of solely relying on either adaptive compliance or proactive con
trol. Furthermore, the performance of Var-Ad is significantly better than 
Fixed-Ad. This can be attributed to the adaptive nature of the admittance 
controller, which adjusts damping and inertial coefficients based on the 
target deformation level. When deformation increases (primarily due to 
the robot’s position lagging behind the slider), the adaptive admittance 
controller reduces the damping and inertial coefficients, enhancing 
force-controlled compliance and enabling the robot to follow the slider 
movement more effectively, thus reducing target deformation. 
Compared to the single-modal hybrid collaboration methods, such as 
CoDoT(F/T) and CoDoT (Tac), the proposed CoDoT method achieves 
better deformation control while also showing competitive force met
rics. This demonstrates the value of utilizing both tactile and F/T in
formation in soft-object collaborative transportation tasks. While CoDoT 
achieves the lowest deformation across all tasks, its performance in Task 
1 is slightly worse than in Tasks 2 and 3. This may be resulted by a 

combination of factors: the soft rod’s greater susceptibility to lateral 
bending under x-axis motion (dominant in Task 1), localized stress 
concentration from the rail-slider’s rigid clamping, and CoDoT’s ability 
to suppress oscillations, which reduces object deformation in more 
complex trajectories in Task 3. It is worth noting that Table 4 is intended 
to compare the performance of different methods under the same task 
settings, rather than to analyze the relative difficulty or deformation 
severity across tasks.

In summary, the proposed CoDoT method performs the best in 
deformation control across all handling scenarios, while also exhibiting 
excellent performance in the average force exerted on the robot with 
outstanding compliance and stability.

4.5. Human-robot transportation task

4.5.1. Evaluation on benchmark silicon rod
To further evaluate the practical performance of the proposed 

method, we conducted comparison experiments in real human-robot 
collaboration scenarios. The experiments were carried out in three 
scenarios (1D Linear motion, 2D Linear motion, and Zigzag motion) 
similarly as we did in Sec. 4.4, with ten tests for each scenario. Experi
ment results are presented in Fig. 12 and Table 5. Considering the 
challenges associated with accurately tracking hand position in dynamic 
human-robot collaboration scenarios, we focus on evaluation metrics 
such as object deformation, average force exerted on the robot, and 
subjective ratings from the human participants, which are more directly 
related to the task performance and user experience. We recruited 10 
participants to complete the three collaborative handling tasks. The 
evaluation criteria were adapted from previous work [38] and consisted 
of three dimensions: Smoothness (measuring the operational fluidity of 
the participants), Task Ease (assessing how easy the participants feel, 
including whether the robot’s response matches with their expectations 
and the physical effort required), and Response Speed (evaluating the 
speed with which the robot adjusted to the human hand’s movements). 
Each metric was rated on a scale of 0 to 10, with higher scores indicating 
better performance.

As shown in Fig. 12(d)-(l), compared to the rail-robot scenario, the 
object deformation for all methods were reduced in human-robot sce
nario. This change is mainly attributed to that in the rail-robot scenario, 
the soft rod is tightly clamped to the slider, causing stress concentration 
and thus increasing both force and deformation. In contrast, in the 
human-robot scenario, the human hand’s grip, characterized by a more 
even contact distribution and softer contact, reduces stress concentra
tion on the soft rod, thereby effectively alleviating deformation. Addi
tionally, the proposed CoDoT method exhibited the lowest target 
deformation across all motion scenarios, with the maximum deforma
tion values of 27, 33, and 47, respectively. Compared to the second-best 
method, RLDoT (with maximum deformations of 37, 40, and 61, 
respectively), our method achieved 27.0 %, 17.5 %, and 23.0 % in 
deformation reductions, demonstrating its strong capability in control
ling target deformation across different human-robot motion scenarios. 
These results reflect the excellent collaborative performance of the 
proposed method. Furthermore, CoDoT exhibited the smallest fluctua
tions in target deformation and the lowest deformation range across the 
tasks, highlighting its adaptability and stability to different human 
motion states.

From Table 5, we can observe that the CoDoT method outperforms 
all other methods in object deformation and exerted force across all 
tasks, with soft rod deformation ranging from 0.13 to 0.25 and exerted 
force ranging from 1.75 N to 2.07 N. Regarding user ratings in the 
human-robot collaboration tasks, CoDoT achieved the highest scores in 
all three dimensions: 9.3 for Smoothness, 9.7 for Task Ease, and 8.8 for 
Response Speed. Among the tested methods, RLDoT performed the 
worst in Smoothness. This could be due to its reliance on multi-sensor 
data and complex reasoning, leading to communication delays and 
low control frequency, which caused discontinuous robot movements 

Table 4 
Performance of different methods on three tasks in rail-robot experiments. 
Bolded numbers represent the best performance. * indicates our proposed 
method.

Method Normalized Object Deformation 
(0 ~ 1)

Average Exerted Force (N)

Task 1 
(1D 

Linear)

Task 2 
(2D 

Linear)

Task 3 
(Zigzag)

Task 1 
(1D 

Linear)

Task 2 
(2D 

Linear)

Task 3 
(Zigzag)

CoDoT* 0.26 0.19 0.23 1.45 2.12 3.35
CoDoT 

(Tac)
0.32 0.39 0.38 1.85 3.62 3.54

CoDoT 
(F/T)

0.27 0.34 0.35 1.73 2.76 3.32

RLDoT 0.42 0.43 0.46 3.74 4.25 6.22
Var-Ad 0.29 0.37 0.41 2.23 3.79 5.37

Fixed-Ad 0.52 0.47 0.58 5.94 5.58 6.34
ACC [23] 0.33 0.35 0.37 2.03 3.78 3.63
AIC [35] 0.41 0.31 0.42 3.76 4.03 4.59
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Fig. 12. Performance comparison in real human-robot collaboration scenarios.

Table 5 
Performance of different methods on three tasks in the human-robot scenario experiments. Bolded numbers represent the best performance. * indicates our proposed 
method. (Higher values of participant ratings reflect better human-robot collaboration performance.).

Method Normalized Object Deformation (0 ~ 1) Average Exerted Force (N) Participant Ratings (0 ~ 10)

Task 1 
(1D Linear)

Task 2 
(2D Linear)

Task 3 
(Zigzag)

Task 1 
(1D Linear)

Task 2 
(2D Linear)

Task 3 
(Zigzag)

Smoothness Task Ease Response Speed

CoDoT* 0.13 0.18 0.25 1.98 1.75 2.07 9.3 9.7 8.8
CoDoT (Tac) 0.23 0.25 0.36 2.63 1.93 2.32 9.0 8.5 8.6
CoDoT (F/T) 0.18 0.28 0.31 2.45 1.89 2.14 8.9 9.0 8.7

RLDoT 0.16 0.21 0.33 2.86 2.22 3.50 6.1 7.0 6.8
Var-Ad 0.21 0.25 0.35 2.94 2.82 3.41 8.0 5.2 6.9

Fixed-Ad 0.39 0.44 0.49 6.11 6.73 6.90 7.2 3.7 5.5
ACC [23] 0.28 0.38 0.31 3.74 3.99 3.27 8.7 9.0 8.5
AIC [35] 0.24 0.31 0.34 3.56 2.61 3.67 8.4 7.9 6.4
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and trajectory jitter. In contrast, the CoDoT method, through the 
introduction of an adaptive admittance controller and high-frequency 
control based on F/T sensor data, generated continuous and smooth 
motion trajectories with low latency.

For Task Ease and Response Speed, Fixed-Ad showed the poorest 
performance. This could be attributed to its fixed admittance parame
ters, which result in a slow robot response to external forces and a lack of 
dynamic adaptation to changes in human hand movements, requiring 
the user to exert more force to complete the task. In contrast, CoDoT 
dynamically adjusts admittance parameters, significantly improving the 
robot’s responsiveness to changes of external forces. Furthermore, its 
proactive motion planning model uses multi-modal information to 
predict the human hand’s movement intent and generate corresponding 
robot actions, thereby reducing the operational burden on the user 
during task completion.

In summary, our method demonstrated exceptional performance in 
human-robot tasks, ensuring that the robot could quickly perceive and 
adapt to changes in the forces or displacements exerted by the human 
hand, achieving real-time interaction and dynamic adjustments. This 
method also enhanced the smoothness, stability, and response speed of 
the robot, significantly reducing the human user’s operational load.

4.5.2. Generalization experiments

(1) Performance evaluation on objects with different stiffness and 
ablation study on domain adaptation

To evaluate the adaptability of the proposed method for handling 
soft rods with different stiffness, we conducted 1D Linear rail-robot 
collaborative transportation tests on three soft rods, each with a 
length of 50 cm and a diameter of 35 mm, and Shore hardness values of 
38A, 65A, and 80A, as shown in Fig. 13. The elastic modulus of the three 
soft rods are approximately 1.2 MPa, 4.0 MPa, and 7.0 MPa, respec
tively. Besides, we conducted ablation experiment to validate the 
effectiveness of domain adapter. Each configuration was tested 30 times.

We first measured the scaling factor k (see Equation (11)) using the 
method described in Section 3.4 and then mapped the force/torque and 
tactile signals for input into the CoDoT method. In the ablation method 
(without domain adapter), the scaling factor k was fixed at 1, implying a 
constant material stiffness equivalent to the reference rod (55A).

The results in Table 6 show that the proposed method achieves 
relatively low deformation and exerted force across different stiffness 
conditions. Notably, under the 38A condition, removing the domain 
adapter results in significant increases in both deformation and exerted 
force. For 65A and 80A rods, while deformation and exerted force 

slightly decreased, the oscillation level increased substantially. This 
increase in oscillatory behavior is likely attributed to inaccurate defor
mation estimation. Specifically, the same force/torque and tactile sig
nals were interpreted as excessive deformation for the harder rods (65A 
and 80A) when domain adaptation was absent. As a result, the robot 
overcompensated during execution, often exceeding the expected mo
tion range. This led to backward corrections in the subsequent steps, 
causing repeated direction reversals and thus higher oscillation levels. 
Conversely, for the 38A rod, insufficient motion compensation led to 
larger deformation and higher exerted force. These results demonstrate 
the generalization capability of CoDoT for handling soft objects with 
varying stiffness, and the critical role of domain adapter in balancing 
compliance and stability during transportation. 

(2) Performance evaluation on objects with different material types

To further evaluate the generalization capability of the proposed 
approach, additional 1D linear motion human-robot collaborative 
transportation experiments were conducted using four types of partially 
deformable objects commonly encountered in industrial scenarios: 
aluminum alloy bar, steel coil, silicone rod and polystyrene foam board, 
as shown in Fig. 14. The performance comparison between our method 
and two baseline methods (RLDoT and Var-Ad) is summarized in 
Table 7. The results show that the proposed method CoDoT consistently 
achieves the lowest normalized object deformation and average exerted 
force across all object types. In contrast, RLDoT—which lacks adaptive 
admittance control and Var-Ad—which lacks proactive motion plan
ning, exhibit increased object deformation and higher applied forces. 
These results demonstrate that the proposed method maintains adapt
ability across a range of material properties during human-robot 
collaboration. 

(3) Performance evaluation on different tasks

To further evaluate the performance of the proposed method in 
different human-robot collaborative tasks, we conducted an obstacle- 
crossing transportation task and a peg-in-hole task, as shown in 
Fig. 15. In the obstacle-crossing task, the human and robot need to 
collaboratively transport the reference soft rod over an obstacle (the 
blue plastic cone) without any contact between the soft rod and the 
obstacle. The average completion time for the CoDoT method was 6.1 s, 
with a success rate of 100 % (30/30). In the peg-in-hole task, the human 
and robot cooperated to insert one end of the soft rod into the hole 
without any contact between the rod and the hole edge. The average 
completion time for this task was 7.3 s, with a success rate of 100 % (30/ 

Fig. 13. Comparison of elastic rods with different stiffness levels in 1D linear motion rail-robot collaborative transportation task.

Table 6 
Performance comparison of CoDoT with and without domain adapter on elastic rods with varying stiffness in the 1D rail-robot collaborative task. Oscillation Level 
indicates the proportion of direction reversals during robot motion. Bolded numbers represent the best performance.

Method Normalized Object Deformation (0 ~ 1) Average Exerted Force (N) Oscillation Level (0 ~ 1)

38A 65A 80A 38A 65A 80A 38A 65A 80A

CoDoT* 0.20 0.11 0.09 2.23 1.64 1.51 0.03 0.04 0.02
w/o Domain Adapter 0.28 0.10 0.07 2.67 1.55 1.44 0.04 0.31 0.43
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30).
To further assess the robustness of the proposed approach in realistic 

scenarios, additional tests were conducted where human operators 
intentionally introduced disturbances, including abrupt stops, sudden 
directional changes, inconsistent motions, and release of the object by 
the human operator. The robot consistently maintained compliant 
behavior without system failure or oscillatory response. The emergency 
detection mechanism identifies the grip release of the human operator 
by detecting a sharp change of z-axis force and abnormal torque derived 
from tactile sensor feedback. The robot achieved 100 % (30/30) success 
rate in disengagement detection and safe stopping, with an average 
response time of 0.94 s. These results demonstrate the system’s ability to 
handle unexpected human deviations and ensure operational safety. 
Representative video recordings2 are provided in the supplementary 
material to illustrate the system’s adaptive performance under these 
conditions.

In summary, the proposed CoDoT method demonstrated excellent 
task completion speed and high success rates in both the obstacle- 
crossing tasks and peg-in-hole tasks. These results indicate the 
method’s exceptional generalization capability and reliability in 
different human-robot collaboration tasks.

5. Conclusion

In this study, we propose a novel control approach (CoDoT) for 
human-robot collaborative transportation of deformable objects by 
integrating proactive robot motion planning with adaptive compliance 
control. Unlike vision-based methods, which may suffer from occlusions, 
lighting variability, and difficulty in capturing subtle deformations, our 
approach relies solely on robot-mounted force/torque and tactile sen
sors with better environmental adaptability and higher sensitivity to 
local deformations. By utilizing multi-modal state representations of the 
soft object, the robot autonomously controls its motion and achieves 
compliant following through an adaptive admittance controller. The 
proposed approach combines the adaptability and proactivity of RL- 
based motion planning with the collaborative stability and responsive
ness of compliance control, while reducing object deformation during 
transportation, thereby enhancing collaboration safety. Experimental 
results quantitatively demonstrate the superiority of our approach 
across a wide range of transportation scenarios, object types, stiffness 
levels, and collaborative tasks. Compared to baseline methods, CoDoT 
achieved over 20 % reduction in normalized deformation across all 
tested motion patterns, and received consistently higher user evaluation 
scores. Besides, our method achieved 100 % success rate and average 
response time of 0.94 s in emergency detection tests in which the human 
operator released the object intentionally, confirming its high safety and 

(a)                              (b)                                (c)                             (d)

Fig. 14. Tests of four different soft objects in 1D linear motion human-robot collaborative transportation task: (a) Aluminum Alloy Bar. (b) Steel Coil. (c) Silicone 
Rod. (d) Polystyrene Foam Board.

Table 7 
Performance of different methods in 1D linear motion human-robot collaborative transportation task with four different soft objects. Bolded numbers represent the best 
performance.

Method Normalized Object Deformation (0 ~ 1) Average Exerted Force (N)

Al Alloy Bar Steel Coil Silicone Rod Foam Board Al Alloy Bar Steel Coil Silicone Rod Foam Board

CoDoT* 0.13 0.19 0.15 0.28 1.78 2.11 1.89 2.84
RLDoT 0.17 0.24 0.19 0.39 2.31 2.63 2.38 3.83
Var-Ad 0.20 0.27 0.24 0.45 2.64 2.89 3.15 4.40

Fig. 15. Human-robot collaboration tasks: (a) Obstacle-crossing. (b) Peg-in-hole.

2 See the video of our experiments: https://youtu.be/W1pozEefz9E.
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robustness under human-induced disturbances. Although the experi
ments primarily involved objects with homogeneous material proper
ties, our approach has potential to handle more intricate shapes and non- 
uniform materials. This can be achieved by integrating additional 
sensing modalities (e.g., vision-based systems) to capture more detailed 
visual information and refining object state representation to account 
for complex deformation patterns and material heterogeneities.

Our work enhances the compliance and operational stability of 
human-robot collaborative handling deformable objects in dynamic 
environments. It will also contribute to improvd intelligence and flexi
bility of human-robot collaboration in the context of Industry 4.0/5.0. 
For example, in the medical device manufacturing field, our method 
could address issues related to object deformation and damage in 
handling delicate and flexible medical devices, ensuring that the 
equipment remains undamaged during transportation while minimizing 
harm to humans. In the logistics industry, our method could improve the 
accuracy and efficiency of human-robot collaborative packaging pro
cesses, ensuring the integrity of soft packaging materials and reducing 
the risk of damage. In electronics manufacturing, our approach offers 
precise control techniques for transporting delicate components, such as 
flexible circuit boards and soft robotic parts, addressing deformation 
control and stability issues during material handling.

One limitation of this work is that the current approach primarily 
relies on the object’s intrinsic state changes and the robot’s F/T and 
tactile feedback to support human-robot collaboration. While this 
approach effectively handles fundamental transportation task scenarios, 
it does not fully incorporate the dynamic information of human motion 
or environmental changes, which are critical aspects in human-robot 
collaborative tasks. In the future work, we plan to extend the system 
by integrating more modalities, such as human motion capture data and 
vision-based perception to further enhance the adaptability and 
robustness of the proposed method. This will allow the robot to better 
respond to human actions and environmental variations, improving its 
performance in more complex and dynamic human-robot collaboration 
scenarios.
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